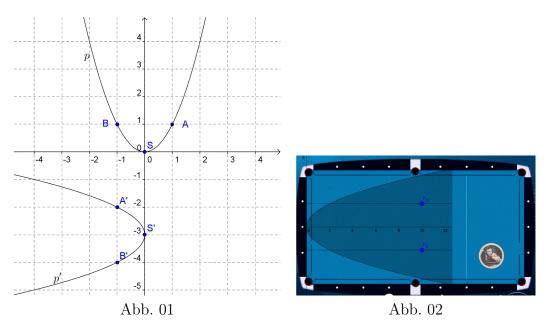
Geometrie mit Lösungen

Gieding

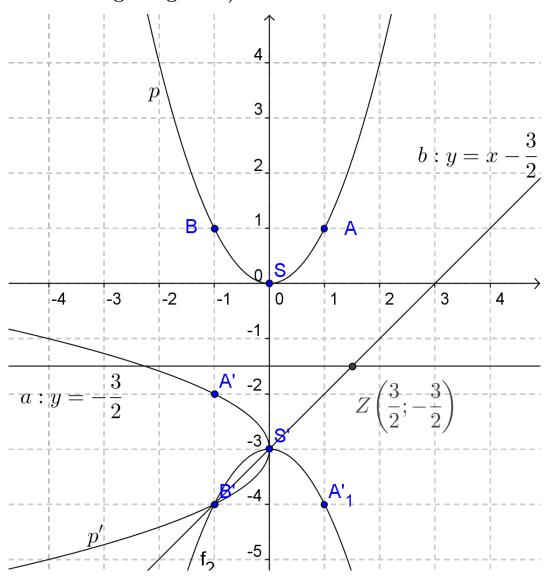
06.01.12

0.1 Die Aufgabe

- a) Es sei p die Normalparabel, d.h. der Graph der Funktion $f(x) = x^2$. p' sei das Bild von p bei einer Drehung $D_{Z,\alpha}$. Bei dieser Drehung werden die Punkte S(0|0), A(1|1) und B(-1|1) auf ihre Bilder S'(0|-3), A'(-1|-2) und B'(-1|-4) abgebildet (s. Abb. 01). Bestimmen Sie das Drehzentrum $Z(x_Z|y_Z)$ und den Drehwinkel α .
- b) Beweisen Sie, dass es eine zenrische Streckung $ZS_{Z,k}$ gibt, die die Normalparabel auf den Graphen der Funktion $y(x) = -\frac{1}{2}x^2$ abbildet. Bestimmen Sie diesbezüglich das Steckzentrum $Z(x_Z|y_Z)$ und den Streckfaktor k.
- c) Alle Parabeln sind einander ähnlich. Es sei $a \in \mathbb{R}, a \neq 0$. Damit existiert zu jedem a eine Ähnlichkeitsabbildung φ_a , die die Normalparabel auf den Graphen g_a der Funktion $y(x) = ax^2$ abbildet. Geben Sie den Streckfaktor k(a) der jeweiligen Ähnlichkeitsabbildung φ_a als Funktion von a an.
- d) In Mike's Billardpub wurde ein Billardtisch mit parabelförmiger Bande b aufgestellt. b lässt sich als Graph der Funktion $f(x) = \frac{1}{2}x^2$ auffassen. Wir modellieren Kugel 1 als Punktmasse $K_1(x_1|y_1)$ und Kugel 2 als Punktmasse $K_2(x_2|y_2)$. Es gelte zunächst $x_1 = 2, y_1 = 10$ und $x_2 = -2, y_2 = 10$. Sowohl K_1 als auch K_2 werden exakt zum gleichen Zeitpunkt t_0 derart angestoßen, dass sie sich mit einer Geschwindigkeit v von $\frac{1}{4}$ Längeneinheiten pro Sekunde parallel zur Symmetrieachse von b bewegen. Wann und wo stoßen K_1 und K_2 zusammen? Die Kugeln erfahren weder beim Rollen noch bei der Reflexion an der Bande b Geschwindigkeitsverluste.

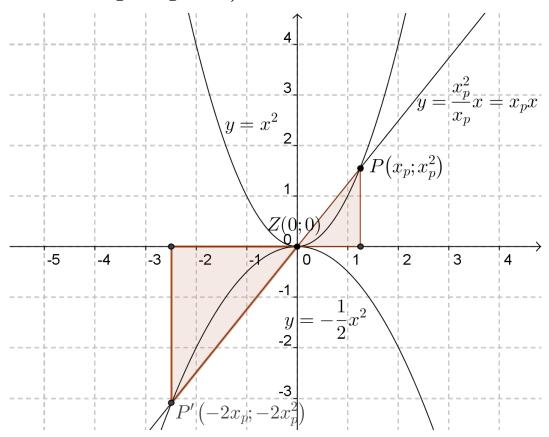


0.2 Lösung Aufgabe a)



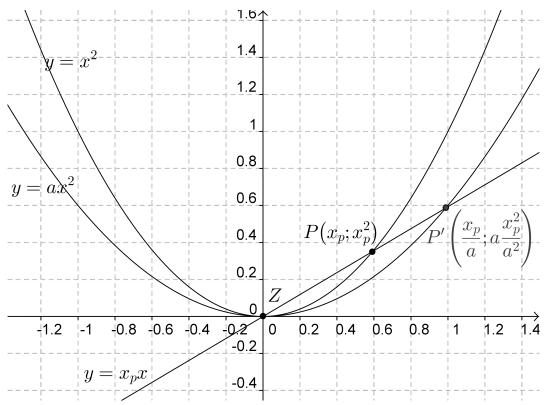
- Jede Drehung $D_{Z,\alpha}$ ist die NAF von zwei Geradenspiegelungen $S_b \circ S_a$ mit $a \cap b = Z$ und $|\angle a, b| = \frac{1}{2} |\alpha|$.
- \bullet Wählen als Spiegelgerade a die Mittelsenkrechte der Strecke $\overline{SS'}.$
- a wird durch die Gleichung $y = -\frac{3}{2}$ beschrieben.
- S_a bildet S auf S', B auf B' und A auf $A'_1(1; -4)$ ab.
- \bullet Wählen als Spiegelachse b die Mittelsenkrechte der Strecke $\overline{A_1',A'}.$
- Wegen der Abstanderhaltung von Bewegungen ist $b \equiv S'B'$ und wird durch die Gleichung $y=x-\frac{3}{2}$ beschrieben.
- Der gemeinsame Schnittpunkt von a und b $Z\left(\frac{3}{2};-\frac{3}{2}\right)$ ist das gesuchte Drehzentrum.
- Der Schnittwinkel zwischen a und b hat eine Größe von 45°. Damit hat der Drehwinkel α eine Größe von 90°.

0.3 Lösung Aufgabe b)



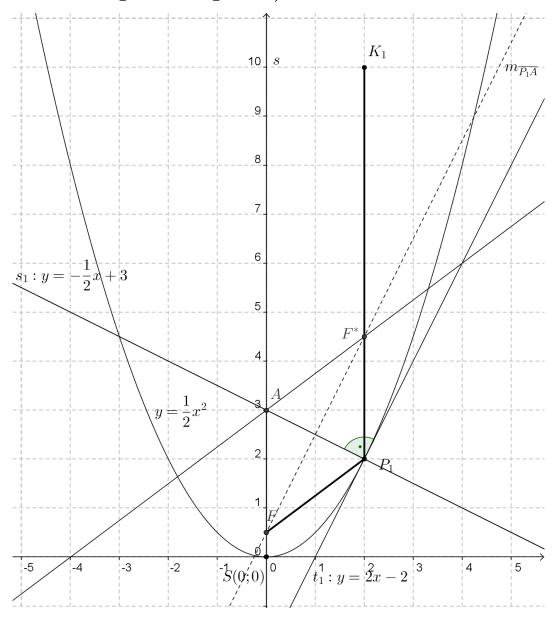
- \bullet Wählen als Streckzentrum Z den Koordinatenursprung.
- Z ist Fixpunkt bei einer Streckung an Z.
- Es sei $P\left(x_p;x_p^2\right)$ ein beliebiger von Z verschiedener Punkt der Normalparabel.
- Die Gerade ZP wird durch die Gleichung $y = x_p x$ beschrieben. Sie schneidet den Graphen der Funktion $y = -\frac{1}{2}x^2$ im Punkt $P'\left(-2x_p, -2x_p^2\right)$.
- P' ist damit auch das Bild von P bei der zentrischen Streckung an Z mit dem Streckfaktor -2.
- Da wir die obigen Überlegungen für einen beliebigen von Z verschiedenen Punkt P der Normalparabel angestellt haben, existiert zu jedem Punkt der Normalparabel genau ein Punkt auf dem Graphen der Funktion $y=-\frac{1}{2}x^2$, der das Bild des Punktes auf der Normalparabel bei der zentrischen Streckung $ZS_{Z,-2}$ ist.

0.4 Lösung von Aufgabe c)



Verallgemeinerung der Überlegungen zur Lösung von Aufgabe b) liefert: $k(a)=\frac{1}{a}$

0.5 Lösung von Aufgabe d)



- ullet Es handelt sich um ein symmetrisches Problem bezüglich der y-Achse als Symmetrieachse s.
- Letztlich geht es darum, die Koordinaten $(x_F; y_F)$ des Brennpunktes F der Parabel $p: y = \frac{1}{2}x^2$ zu bestimmen.
- Die Kugel K_1 trifft im Punkt $P_1(2;2)$ auf p.
- Wir erhalten den Brennpunkt F von p, wenn wir die Gerade K_1P_1 an der Senkrechten s_1 zur Tangente t_1 im Punkt P_1 spiegeln und den Schnittpunkt dieser gespiegelten Geraden mit der Symmetrieachse s bestimmen.
- Die erste Ableitung der Funktion $y = \frac{1}{2}x^2$ an der Stelle 2 liefert uns den Anstieg von t_1 :. Dieser hat den Wert 2.
- Die Senkechte s_1 in P_1 auf t_1 hat demnach den Anstieg $-\frac{1}{2}$. Mit Hilfe des Punktes P_1 bestimmen wir die Geradengleichung von $s_1: y = -\frac{1}{2}x + 3$.

- wir nehmen an, wir hätten F bereits gefunden. Dann gäbe es auf P_1K_1 genau einen Punkt F^* , der bei der Spiegelung an s_1 auf F abgebildet wird. Bezüglich dieser Spiegelung an s_1 sind P_1 und der Schnittpunkt A von s_1 mit s Fixpunkte.
- Aus Gründen der Abstandserhaltung ist $\overline{P_1F^*AF}$ eine Raute. F^*F ist damit die Mittelsenkrechte von $\overline{P_1A}$. Der Mittelpunkt von $\overline{P_1A}$ hat die Koordinaten $(1; \frac{5}{2})$. Der Anstieg der Mittelsenkrechten von $\overline{P_1A}$ ist gleich dem Anstieg von t_1 und nimt damit den Wert 2 an.
- Demnach wird die Mittelsenkrechte von $\overline{P_1A}$ durch die Gleichung $y = 2x + \frac{1}{2}$ beschrieben, woraus sich die Koordinaten von F ableiten lassen: $F\left(0; \frac{1}{2}\right)$.
- Wir berechnen jetzt die Länge des Streckenzuges $\overline{K_1P_1F}$: $\left|\overline{K_1P_1F}\right| = |K_1P_1| + |P_1F| = 8 + \sqrt{4 + \frac{9}{4}} = 8 + \frac{5}{2} = \frac{52}{4}LE$.
- Die Kugeln stoßen somit nach 52 Sekunden zusammen.

0.6 Alternative einfachere Lösung von d)

- Wir wissen bereits, dass alle Parabeln zueinander ähnlich sind.
- Die Normalparabel hat den Brennpunkt $F_n\left(0; \frac{1}{4}\right)$.
- Die zentrische Streckung am Scheitel mit dem Streckfaktor 2 bildet die Normalparabel auf den Graphen der Funktion $y = \frac{1}{2}x^2$ ab.
- Der Brennpunkt F hat damit die Koordinaten $(0; \frac{1}{2})$.
- Weiter wie oben ..