Einführung in die Geometrie: Übungen zum Tutorium, Nr. 10

(Lösungen)

1. Unter einem Dreieck versteht man die Vereinigungsmenge von drei besonderen Strecken (umgangssprachlich: Das Dreieck ist sein Rand.). Definieren Sie den Begriff Dreieck \overline{ABC}

Definition (Dreieck):

Es seien A, B und C drei nicht kollineare Punkte. Die Vereinigungsmenge der Strecken \overline{AB} , \overline{BC} und \overline{AC} heißt Dreieck \overline{ABC} .

2. Definieren Sie mittels des Schnitts geeigneter Halbebenen den Begriff des Inneren eines Dreiecks \overline{ABC} .

Definition (Inneres eines Dreiecks):

Das Innere eines Dreiecks \overline{ABC} ist die Schnittmenge der drei Halbebenen ABC^+ , BCA^+ und ACB^+ . Kurzschreibweise: $I(\overline{ABC}) := ABC^+ \cap BCA^+ \cap ACB^+$

3. Beweisen Sie: Halbebenen sind konvexe Punktmengen.

Lösung:

Wir zeigen zunächst: Offene Halbebenen sind konvexe Punktmengen.

Voraussetzung: offene Halbebene gP^+

Behauptung: gP^+ ist konvex

Beweis:

Nr.	Beweisschritt	Begründung
1	Q sei ein beliebiger weiterer Punkt, der mit P in der offenen Halbebene gP^+ liegt.	
2	Es gilt: $\overline{QP} \cap g = \{\}$	Def. Halbebene
3	$\forall R \in \overline{QP} : \overline{RP} \cap g = \{\}$	2
4	Alle Punkte auf der Strecke \overline{QP} gehören zur offenen	3
	Halbebene gP^+	
5	gP^+ ist konvex	4

Erweiterung auf Halbebenen:

Es müssen zusätzlich noch zwei weitere Fälle betrachtet werden:

- a) Zwei Punkte A und B der Punktmenge liegen auf der Trägergeraden g
- b) Ein Punkt A liegt auf der Trägergeraden g und ein Punkt B liegt in der offenen Halbebene gP^+

zu a) \overline{AB} liegt vollständig in g und gehört somit zur Halbebene gP^+ zu b) wir teilen \overline{AB} in die Strecke $\overline{AB} \setminus A$ und dem Punkt A auf. $\overline{AB} \setminus A$ hat keinen Schnittpunkt mit g und A gehört zu g und damit ebenfalls zur Halbebene gP^+

4. Entwickeln Sie ein Kriterium dafür, dass ein Viereck konvex ist, indem Sie mit Halbebenen argumentieren.

LÖSUNG:

Ein Viereck $A_1A_2A_3A_4$ ist genau dann konvex, falls für zwei beliebige benachbarte Punkte A_iA_{i+1} (i=1...4; für i=4 wird $i+1=1\equiv 5 \mod 4$ gesetzt) die beiden jeweils anderen Punkte in derselben Halbebene bezüglich A_iA_{i+1} liegen.

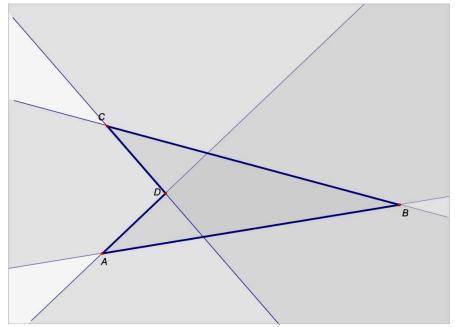
5. Definieren Sie das "Innere eines Vierecks *ABCD*". Beachten Sie, dass dabei sowohl konvexe als auch nichtkonvexe Vierecke erfasst werden sollen.

LÖSUNG:

1. Versuch einer Definition (Inneres eines Vierecks):

Das Innere eines Vierecks \overline{ABCD} ist die Schnittmenge der folgenden Halbebenen: $ABC^+, BCD^+, CDA^+, DAB^+$.

Diese Definition liefert nur für konvexe Vierecke das, was wir als Inneres eines Vierecks verstehen wollen. Die folgende Abbildung wendet die Definition auf ein nicht konvexes Viereck an:



Zur Generierung der Abbildung wurden die grafischen Darstellungen der Halbebenen ABC^+,BCD^+,CDA^+,DAB^+ in verschiedene aufeinanderliegende Ebenen des Grafiksystems gelegt und mit einer Transparenz von 40% ausgestattet. Das, was wir eigentlich unter dem Inneren des Vierecks \overline{ABCD} verstehen wollen, müsste jetzt einheitlich in ein und derselben Helligkeit eingefärbt sein. Wie wir sehen ist dem nicht so. Deshalb: "Teile und Herrsche!" Wir zerlegen das Viereck in zwei Teildreiecke und vereinigen das Innere dieser beiden Teildreiecke.

Definition (Inneres eines Vierecks):

Unter dem Inneren eines Vierecks ABCD versteht man die Vereinigungsmenge der beiden Punktmengen, die jeweils das Innere der folgenden beiden Dreiecke bilden:

- ABC und ACD, falls die Punktmengen, die das jeweils Innere dieser beiden Dreiecke (ohne die Dreieckseiten) bilden, disjunkt sind,
- ABD und BCD sonst.