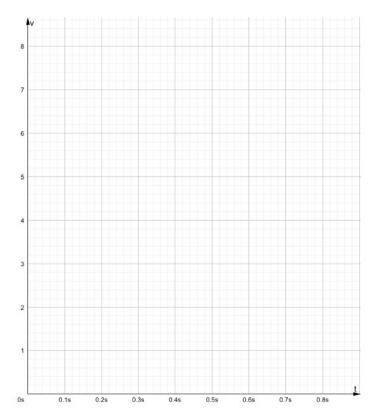

Das Geschwindigkeit-Zeit-Gesetz für den Freien Fall



https://www.geogebra.org/m/cdst3jhc

Unsere Messungen zum freien Fall ergaben, dass der Zusammenhang zwischen Weg und Zeit beim freien Fall durch eine Parabel mit der Gleichung $s=\frac{g}{2}t^2$ beschrieben wird. Weitere Überlegungen ergaben, dass die momentane Geschwindigkeit zu einem gewissen Zeitpunkt t gleich dem Anstieg der Tangente an die Parabel zu dem Zeitpunkt t ist.

- 1. Öffne die obige Geoegebra App.
- 2. Stelle mit dem Schieberegler für die Zeit die Zeitpunkte $0s; 0.1s; 0.2s; \dots 0.6s$ ein und lies die zugehören Anstiege der Tangente t ab.
- 3. Fülle dabei die untenstehende Wertetabelle aus.
- 4. Zeichne ein Geschwindigkeit-Zeit-Diagramm entsprechend deiner Wertetabelle. (senkrechte Achse: Geschwindigkeit, waagerechte Achse: Zeit).
- 5. Beschreibe den Zusammenhang zwischen Geschwindigkeit und Zeit.
- 6. Entwickle eine Formel, die den Zusammenhang zwischen Geschwindigkeit und Zeit beim freien Fall beschreibt.

t in s	$v in \frac{m}{s}$
0,0	
0,1	
0,2	
0,3	
0,4	
0,5	
0,6	

Geschwindigkeit und Zeit sind beim freien Fall \ldots . Es gilt die Formel $v=\ldots$