Übung Aufgaben 11 (WS 12 13): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „==Aufgabe 11.1== Beweisen Sie Satz IX.1:<br /> Gegeben seien zwei Spiegelgeraden ''a'' und ''b'' mit einem gemeinsamen Schnittpunkt ''S''. Wir betrachten die Verk…“) |
(→Aufgabe 11.4) |
||
Zeile 15: | Zeile 15: | ||
==Aufgabe 11.4== | ==Aufgabe 11.4== | ||
− | Beweisen Sie die Umkehrung des Wechselwinkelsatzes mit abbildungsgeometrischen Methoden. Hinweis: Der | + | Beweisen Sie die Umkehrung des Wechselwinkelsatzes mit abbildungsgeometrischen Methoden. Hinweis: Der Wechselwinkelsatz ist bereits bewiesen.<br /> |
[[Lösung von Aufgabe 11.4P (WS_12_13)]] | [[Lösung von Aufgabe 11.4P (WS_12_13)]] | ||
Version vom 23. Januar 2013, 14:58 Uhr
Inhaltsverzeichnis |
Aufgabe 11.1
Beweisen Sie Satz IX.1:
Gegeben seien zwei Spiegelgeraden a und b mit einem gemeinsamen Schnittpunkt S. Wir betrachten die Verkettung . Jeder Punkt P liegt dabei mit seinem Bildpunkt
auf einem Kreis k um S.
Lösung von Aufgabe 11.1P (WS_12_13)
Aufgabe 11.2
Das Rechteck soll durch eine Drehung auf das blaue Rechteck abgebildet werden. Konstruieren Sie den Drehpunkt. Wo müssen die beiden Achsen liegen, wenn die Drehung durch eine Verkettung zweier Achsenspiegelungen erzeugt werden soll?
Lösung von Aufgabe 11.2P (WS_12_13)
Aufgabe 11.3
Beweisen Sie Satz IX.9:
Gegeben seien zwei zueinander parallele Spiegelgeraden a und b. Wir betrachten die Verkettung . Jeder Punkt P hat dabei zu seinem Bildpunkt
einen Abstand der doppelt so groß ist als der Abstand der beiden Spiegelgeraden.
Lösung von Aufgabe 11.3P (WS_12_13)
Aufgabe 11.4
Beweisen Sie die Umkehrung des Wechselwinkelsatzes mit abbildungsgeometrischen Methoden. Hinweis: Der Wechselwinkelsatz ist bereits bewiesen.
Lösung von Aufgabe 11.4P (WS_12_13)
Aufgabe 11.5
Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel gleich Ausfallswinkel
(siehe GeoGebra-Applet).