Übung 7

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 7.1

Beweisen Sie: Zu jeder Strecke \overline{AB} existiert genau eine Strecke \overline{AB^{*}} mit \left| AB^{*} \right| = \pi \left| AB \right| und \overline{AB} \subset \overline{AB^{*}}.

Aufgabe 7.2

Beweisen Sie: Zu jeder Strecke \overline{AB} existiert genau eine Strecke \overline{AB^{*}} mit \left| AB^{*} \right| = \frac{1}{\pi} \left| AB \right| und \overline{AB^{*}} \subset \overline{AB}.

Aufgabe 7.3

Der Punkt \ B möge die Strecke \overline{AC} derart in die Teilstrecken \overline{AB} und \overline{BC} teilen, dass \left| AB \right| > \left| BC \right| gilt. Beweisen Sie:
Wenn \frac{ \left| AC \right| }{\left| AB \right| } = \frac{\left| AB \right| }{\left| BC \right| }, dann \frac{ \left| AC \right| }{\left| AB \right|} = \frac{1 + \sqrt{5}}{2}.

Aufgabe 7.4 (*)

Was hat Aufgabe 7.3 hiermit zu tun?

Apfel halb.jpg

Aufgabe 7.5

Definieren noch einmal die Begriffe Halbgerade \ AQ^{+} und \ AQ^{-}. In diesen neuen Definitionen dürfen Sie die Zwischenrelation nicht explizit verwenden. Beweisen Sie dann, dass Ihre neuen Definitionen zur | Definition II.3 äquivalent sind.

Aufgabe 7.6

Beweisen Sie: Der Durchschnitt zweier konvexer Punktmengen ist konvex.

Aufgabe 7.7

Formulieren Sie die Kontraposition der Implikation aus Aufgabe 7.6.

Aufgabe 7.8

Zeigen Sie mittels einer Skizze, dass die Umkehrung der Implikation aus Aufgabe 7.6 nicht wahr ist.

Aufgabe 7.9

Unter einem Dreieck versteht man die Vereinigungsmenge von drei besonderen Strecken (umgangssprachlich: Das Dreieck ist sein Rand.). Definieren Sie den Begriff Dreieck \overline{ABC}.

Aufgabe 7.10

Definieren Sie mittels des Schnitts geeigneter Halbebenen den Begriff des Inneren eines Dreiecks \overline{ABC}.