Lösung von Aufgabe 14.4

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabenstellung 1

Der Begriff des Drachen sei wie folgt definiert: Unter einem Drachen versteht man ein konvexes Viereck mit zwei Paaren benachbarter Seiten, die kongruent zueinander sind.

Man beweise: Wenn ein Viereck \overline{ABCD} ein Drachen ist, dann halbiert eine Diagonale dieses Vierecks die andere Diagonale von \overline{ABCD}.

Voraussetzung

  • Viereck \overline{ABCD}
  • Es gilt wie bei Fall 1 (Skizze): \overline{ABCD} ist konvex.
Der Beweis von Fall 2 - ein konkaver Drachen: Pfeilviereck - verläuft analog, oder zumindest ähnlich.
  • Es gilt (oBdA): \overline{AB} \cong \overline{AD} \land \overline{DC} \cong \overline{BC}
  • nach Skizze: \ \overline{AC} \cap \overline{DB} = {S}
An sich müsste bewiesen werden, dass \overline{AC} und \ \overline{DB} sich schneiden. Hier ein Verweis auf "Geschichten aus dem Inneren", bzw. die einfache Begründung, dass \ D und \ B in unterschiedlichen Halbebenen bezüglich zur Geraden \ AC liegen.

Behauptung

|AS| = \ |SC| \lor |BS| = |DS|

Erklärung zu dieser Behauptung: wenn \ S \in \overline{AC} \land \ S \in \overline{DB} (laut VSS) und die Endpunkte EINER Diagonalen (der Diagonalen-Strecke) zu S den selben Abstand hat, so wird die eine Diagonale von der anderen halbiert.

Skizze

Nr. Beweisschritt Begründung
(I) \overline{ADC} \cong \overline{ABC} Dreieckskongruenz durch SSS


\overline{AB} \cong \overline{AD} nach VSS
\overline{DC} \cong \overline{BC} nach VSS
\overline{AC} \equiv \overline{AC} trivial

(II) w_a \in \overline{AC} (\ w_a ist Winkelhalbierende des Winkels \ \alpha (I), Dreieckskongruenz: \ \alpha_1 \cong \alpha_2
(III) S \in w_a (II), S \in \overline{AC} (VSS)
(IV) \overline{ADS} \cong \overline{ABS} Dreieckskongruenz durch SWS


\overline{AB} \cong \overline{AD} nach VSS
\alpha_1 \cong \alpha_2 (I)
\overline{AS} \equiv \overline{AS} trivial

(V) |BS| \cong |DS| (IV)

Die Diagonale \ \overline{DB} wird durch die Diagonale \ \overline{AC} halbiert!


Zusatz-Aufgabe

Versuch 1

Voraussetzung: Strecke AD kongrent zu Strecke DC und Strecke AB kongruent zu Strecke BC
Behauptung: Strecke DB halbiert die Strecke AC

Beweis:
Betrachte die Mittelsenkrechte von AC. Laut MiSe-Kriterium enthält diese alle Punkte, die zu den beiden Endpunkten A und C
jeweils denselben Abstand haben.
Laut Voraussetzung gilt, dass D denselben Abstand zu A und C hat, ferner hat B denselben Abstand
zu A und C. Wegen dem o.g. Kriterium gehören nun D und B zu der Mittelsenkrechte der Strecke AC. Da ABCD nicht konvex, und wegen Definition Mittelsenkrechte folgt nun, dass die Strecke DB die Strecke AC halbiert.