Lösung von Aufgabe 4

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.

  1. Wir formulieren Satz I neu und beginnen mit „Es seien A, B und C drei Punkte.“ Ergänzen Sie: „Wenn A,B und C … , dann … .“
  2. Beweisen Sie Satz I indirekt.
  3. Bilden Sie die Kontraposition von Satz I.
  4. Beweisen Sie auch die Kontraposition von Satz I.
  5. Formulieren Sie die Umkehrung von Satz I.
  6. Gilt auch die Umkehrung von Satz I?

Inhaltsverzeichnis

Lösung:

Teilaufgabe 1

Es seien \ A, \ B und \ C drei Punkte.

Wenn \ A,\ B und \ C kollinear sind , dann sind je zwei der Punkte \ A,\ B und \ C nicht identisch.“
Andere Formulierung: \operatorname{nKoll} \left( A, B, C \right) \Rightarrow A \not\equiv B \not\equiv C \not\equiv A

Teilaufgabe 2

vorangegengene Diskussionen bzw. Lösungsvorschläge

1. Es seien A, B und C drei Punkte. Wenn A,B und C nicht kollinear sind , dann sind sie paarweise verschieden.
2. Voraussetzung: Es seien A, B und C drei Punkte mit nkoll(A, B, C).
Annahme: A identisch B o.B.d.A.

Schritt Begründung
1) Durch die Punkte B und C geht genau eine Gerade g.
2) A identisch B => A Element g
3) A Element g => koll(A, B,C)
4) Widerspruch zur Voraussetzung
1) Axiom I/1
2) Identität
3) Definition: (kollinear)

3. Sind drei Punkte nicht paarweise verschieden, so sind sie kollinear.
5. Sind drei Punkte paarweise verschieden, so sind sie nicht kollinear.
6. Nein.


4. Voraussetzung: A, B und C sind nicht paarweise verschieden.
Annahme: nkoll (A, B, C)
I. durch die Punkte A und C geht genau eine Gerade g. ->Axiom I/1
II. B ist kein Element von g -> Annahme
III. B nicht identisch A und B nicht identisch C -> I. und II.
IV. Widerspruch zur Voraussetzung