Lösung von Aufgabe 6.4: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Beweisen Sie: Jede Ebene enthält wenigstens drei paarweise verschiedene Punkte.
 
Beweisen Sie: Jede Ebene enthält wenigstens drei paarweise verschiedene Punkte.
  
Behauptung: Wenn eine Ebene E existiert, dann enthält sie wenigstens drei paarweise verschiedene Punkte A, B, C.
 
Vorraussetzung: Es existiert eine Ebene E mit A, B, C Element E
 
Annahme: A, B, C sind paarweise verschieden.
 
  
  
 
===Eins===
 
===Eins===
 +
Behauptung: Wenn eine Ebene E existiert, dann enthält sie wenigstens drei paarweise verschiedene Punkte A, B, C.
 +
Vorraussetzung: Es existiert eine Ebene E mit A, B, C Element E
 +
Annahme: A, B, C sind paarweise verschieden.<br />
 
{| class="wikitable"  
 
{| class="wikitable"  
 
|-  
 
|-  

Version vom 5. Juni 2010, 13:40 Uhr

Beweisen Sie: Jede Ebene enthält wenigstens drei paarweise verschiedene Punkte.


Inhaltsverzeichnis

Eins

Behauptung: Wenn eine Ebene E existiert, dann enthält sie wenigstens drei paarweise verschiedene Punkte A, B, C. Vorraussetzung: Es existiert eine Ebene E mit A, B, C Element E Annahme: A, B, C sind paarweise verschieden.

Beweisschritt Begründung
(1) komp (A,B,C)
(2) A nicht identisch B

B nicht identisch C
C nicht identlich A

1)nach Definition I/6
2)nach Satz I/7


=> A, B, C sind paarweise verschieden


Kommt uns ein wenig zu kurz vor. von Maude001 und Nicola

Zwo

Behauptung:

Wenn eine Ebene \Epsilon existiert, dann enthält sie wenigstens drei paarweise verschiedene Punkte A, B, C.

Vorraussetzung:

Es existiert eine Ebene \Epsilon mit A, B, C \in \Epsilon

Annahme:

A, B, C sind paarweise verschieden.

Diesen Satz I.7 ("Jede Ebene enthält (wenigstens) drei Punkte.") muss man bestimmt mit einer Fallunterscheidung beginnen.

Fall 1:

koll(A, B, C) <-> A, B, C \in Gerade g Dadurch ergibt sich ja (nach Vorraussetzung), dass A, B, C \in \Epsilon und (nach Fallunterscheidung) A, B, C \in g. Dann greift Axiom I/5

       Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E. 

...hier sind es sogar alle drei Punkte.

Fall 2:

Je zwei Punkte sind kollinear.
o.B.d.A koll(A, B) -> A, B \in Gerade g \land C \ni Gerade g
nkoll(A, B, C)
Nun besagt Axiom I/4

       Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält.

Reicht das als Begründung für Satz I.7 ?

Zusatz: Deswegen brauchen wir den Fall 3 nicht, wonach alle drei Punkte nichtkollinear sind. Geht nicht!
AXIOM I/1(Axiom von der Geraden)

       Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält. 



--Heinzvaneugen