Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Umkehrung 1: Satz des Thales)
(Umkehrung Satz des Thales)
Zeile 55: Zeile 55:
 
===Umkehrung Satz des Thales===
 
===Umkehrung Satz des Thales===
 
Ist ein Peripheriewinkel <math>\gamma </math> über einer Sehne <math> s </math> eines Kreises <math> k </math> ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises <math> k </math>.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 
Ist ein Peripheriewinkel <math>\gamma </math> über einer Sehne <math> s </math> eines Kreises <math> k </math> ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises <math> k </math>.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 +
===Kommentar zu den Umkehrungen des Thhlesstzes--[[Benutzer:*m.g.*|*m.g.*]] 20:43, 23. Jul. 2010 (UTC)===
 +
Es sei <math>\ \alpha</math> ein Winkel und <math>\ k</math> ein Kreis.
 +
Der Satz des Thales hat zwei Voraussetzungen:
 +
 +
# <math>\ \alpha</math> ist Peripheriewinkel von <math>\ k</math>
 +
# über einem Durchmesser von <math> \ k</math>.

Version vom 23. Juli 2010, 22:43 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Induktive Satzfindung

--Gubbel 12:10, 21. Jul. 2010 (UTC)

Funktionale Betrachtung

Variante 1

--"chris"07 21:47, 15. Jul. 2010 (UTC)


Variante 2

--"chris"07 21:12, 14. Jul. 2010 (UTC)


Variante 3

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

ikonisches/halbikonisches Beweisen

--"chris"07 17:07, 15. Jul. 2010 (UTC)

Beweisen am Beispiel

induktive Satzfindung der allgemeinen Umkehrung

Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)

Beweisführung

Satz des Thales

Satz des Thales

Es sei k ein Kreis mit einem Durchmesser  \overline {AB} . Jeder Peripheriewinkel von k über  \overline {AB} ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 1: Satz des Thales

Umkehrung Satz des Thales

Ist  \overline {ABC} ein Dreieck mit einem rechten WInkel bei  C , so liegt der Punkt  C auf dem Thaleskreis, wobei  \overline {ABC} einen Durchmesser des Kreises  k bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 2: Satz des Thales

Umkehrung Satz des Thales

Ist ein Peripheriewinkel \gamma über einer Sehne  s eines Kreises  k ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises  k .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Kommentar zu den Umkehrungen des Thhlesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)

Es sei \ \alpha ein Winkel und \ k ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:

  1. \ \alpha ist Peripheriewinkel von \ k
  2. über einem Durchmesser von  \ k.