Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Umkehrung Satz des Thales)
(Kommentar zu den Umkehrungen des Thhlesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC))
Zeile 61: Zeile 61:
 
# <math>\ \alpha</math> ist Peripheriewinkel von <math>\ k</math>
 
# <math>\ \alpha</math> ist Peripheriewinkel von <math>\ k</math>
 
# über einem Durchmesser von <math> \ k</math>.
 
# über einem Durchmesser von <math> \ k</math>.
 +
 +
Die Behauptung des Thalessatzes: <math>\ \alpha</math> ist ein rechter Winkel.
 +
 +
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
 +
 +
Satz des Thahles:
 +
 +
Aus V1 und V2 folgt B.
 +
 +
Die eigentliche Umkehrung:
 +
 +
Aus B folgt V1 und V2.
 +
 +
Gemischte Umkehrung 1:
 +
 +
Aus B und V1 folgt V2.
 +
 +
Gemischte Umkehrung 2:
 +
 +
Aus B und V2 folgt V1.

Version vom 23. Juli 2010, 22:49 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Induktive Satzfindung

--Gubbel 12:10, 21. Jul. 2010 (UTC)

Funktionale Betrachtung

Variante 1

--"chris"07 21:47, 15. Jul. 2010 (UTC)


Variante 2

--"chris"07 21:12, 14. Jul. 2010 (UTC)


Variante 3

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

ikonisches/halbikonisches Beweisen

--"chris"07 17:07, 15. Jul. 2010 (UTC)

Beweisen am Beispiel

induktive Satzfindung der allgemeinen Umkehrung

Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)

Beweisführung

Satz des Thales

Satz des Thales

Es sei k ein Kreis mit einem Durchmesser  \overline {AB} . Jeder Peripheriewinkel von k über  \overline {AB} ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 1: Satz des Thales

Umkehrung Satz des Thales

Ist  \overline {ABC} ein Dreieck mit einem rechten WInkel bei  C , so liegt der Punkt  C auf dem Thaleskreis, wobei  \overline {ABC} einen Durchmesser des Kreises  k bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 2: Satz des Thales

Umkehrung Satz des Thales

Ist ein Peripheriewinkel \gamma über einer Sehne  s eines Kreises  k ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises  k .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Kommentar zu den Umkehrungen des Thhlesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)

Es sei \ \alpha ein Winkel und \ k ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:

  1. \ \alpha ist Peripheriewinkel von \ k
  2. über einem Durchmesser von  \ k.

Die Behauptung des Thalessatzes: \ \alpha ist ein rechter Winkel.

Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.

Satz des Thahles:

Aus V1 und V2 folgt B.

Die eigentliche Umkehrung:

Aus B folgt V1 und V2.

Gemischte Umkehrung 1:

Aus B und V1 folgt V2.

Gemischte Umkehrung 2:

Aus B und V2 folgt V1.