Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Kommentar zu den Umkehrungen des Thhlesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC))
(Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC))
Zeile 66: Zeile 66:
 
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
 
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
  
Satz des Thahles:
+
Satz des Thales:
  
 
Aus V1 und V2 folgt B.
 
Aus V1 und V2 folgt B.

Version vom 23. Juli 2010, 21:50 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Induktive Satzfindung

--Gubbel 12:10, 21. Jul. 2010 (UTC)

Funktionale Betrachtung

Variante 1

--"chris"07 21:47, 15. Jul. 2010 (UTC)


Variante 2

--"chris"07 21:12, 14. Jul. 2010 (UTC)


Variante 3

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

ikonisches/halbikonisches Beweisen

--"chris"07 17:07, 15. Jul. 2010 (UTC)

Beweisen am Beispiel

induktive Satzfindung der allgemeinen Umkehrung

Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)

Beweisführung

Satz des Thales

Satz des Thales

Es sei k ein Kreis mit einem Durchmesser  \overline {AB} . Jeder Peripheriewinkel von k über  \overline {AB} ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 1: Satz des Thales

Umkehrung Satz des Thales

Ist  \overline {ABC} ein Dreieck mit einem rechten WInkel bei  C , so liegt der Punkt  C auf dem Thaleskreis, wobei  \overline {ABC} einen Durchmesser des Kreises  k bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Umkehrung 2: Satz des Thales

Umkehrung Satz des Thales

Ist ein Peripheriewinkel \gamma über einer Sehne  s eines Kreises  k ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises  k .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)

Es sei \ \alpha ein Winkel und \ k ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:

  1. \ \alpha ist Peripheriewinkel von \ k
  2. über einem Durchmesser von  \ k.

Die Behauptung des Thalessatzes: \ \alpha ist ein rechter Winkel.

Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.

Satz des Thales:

Aus V1 und V2 folgt B.

Die eigentliche Umkehrung:

Aus B folgt V1 und V2.

Gemischte Umkehrung 1:

Aus B und V1 folgt V2.

Gemischte Umkehrung 2:

Aus B und V2 folgt V1.