Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Kommentar zu den Umkehrungen des Thhlesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC))
(Umkehrung Satz des Thales)
 
(6 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 47: Zeile 47:
 
===Satz des Thales===
 
===Satz des Thales===
 
Es sei k ein Kreis mit einem Durchmesser <math> \overline {AB} </math>. Jeder Peripheriewinkel von k über <math> \overline {AB} </math> ist ein rechter Winkel.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 
Es sei k ein Kreis mit einem Durchmesser <math> \overline {AB} </math>. Jeder Peripheriewinkel von k über <math> \overline {AB} </math> ist ein rechter Winkel.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 +
 +
Ein Versuch den Satz des Thales  mit dem EP zu beweisen:
 +
 +
<ggb_applet width="1280" height="648"  version="3.2" ggbBase64="UEsDBBQACAAIAOhL+DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrNcts2ED43T8HhuaIJgADJGSkZWc4hM3GTqdMc2umBIiEJNUWqJGRLfqvm9y3yTF0ApP4jh5LcxokPNBfL5eL79g+M289m49S64UUp8qxjI8e1LZ7FeSKyYceeykErsJ89fdIe8nzI+0VkDfJiHMmOTRxsK/lUPH3yU7sc5bdWlGqVt4LfdmxZTLltlZOCR0k54lwa8SBKS5BH05lIRVTMX/X/4rEslwvGxotsMpW1kXicvBRlfXum3zdJhbwQNyLhhZXmccdmFDyH397yQoo4Sju25xoJ7th4YxFERK2O8kLc5ZlU6kvjA5BYVinuOACClax9pvfZ5tM4FYmIMrUZ7QcoWdatSOQIdF3sgU0uhiNwlnnMmIvzvEiu5qXkY2v2Oy9y8Mf3HewvfxA8NzdLBGHHoys/sFSCy+CLR9dXfHjoq0v61fzmiksJVJZWNONLlIeFSNZuXpTneboUTXKRyV40kdNCxwGpRFdyrt4GyBVqk91smPJKhoGnEY+v+/nsyiBHjOk384l+RDvUH/byNC+sQnFCQaG69s1V6yhPF1qu1nG1RmVDGV2soxBrDX3tm6vWSkVmXKt2jupdI7d+jSgtJQDjKnwXm0+jPod4sK1pJuTL+gbi5rraKjIP/DId9yFvViNnYROdymb7bCPm2te8yHhqAisDbqf5tLRuVASbd2lHEh6LMdyahQqSSNH1GzhgpAkfFrx23KSdAUyvuqvBuyFun9VOKB9K8DWWUD5gP1Lt5SqSd1bCS+vNCIKzVNkuIdPUjpNIgoIqHDzlYw55JnV46OhawHRpL2pKrutDXQmq9SXgsLwzVHRQRelkFIHEqfaSRnOoFqu70/Yu82R9z1EG2OkNQc5OlAHFzoTzpCqQsgppawImdYKsQK8RK60ZJKXD3LV/4NO8Y7dch0JS3xlj+hmTXKqWaD9IxbyB6B6wzn8MsBAoe6tgoRosL2gGVpyPx1GWWFk0hhf3RBGnXGMkVFOxIlcFmBUhCFQ+VM/8cfmzdf5nhdFU1kqxMVyZ22IBIl/EC5Rje73oyBHkdsbLUldGuVoDj6HKPZyob/INehfPbsCzvCgta+ZWHM5d80LrrpbMkOZGraFKdIdWSIKYKMTM6tb63VqrC723heFJTBnckcpw1wPxroTpUqUBCWP8+zszeyhN2YRAi8VAxPtj4CVsfXcEnG+xHu1nXaG44Cv67klf5pcia2c5Yo5nqhFxfErY2nqDwNkgRoxhQouF3E/Mi0xCtwNMNtiJDTsRXNT0Vu96habufprWS2T3oBLJPM2BuvTN5QQsICfw6sLGjqlrr/UON2HbhKnXBKbeQTAhbOY4ff1euglzAhIGLszWlPmeGzKNOQzJYYAp8hFxPcwC5fHhDFTdY4OD3tcKS38/FWVlrQa7/4hqC3VCfxVXotH2HAxdPITjjUcwDV0DdosRJwxIAIrYJcjzgxNVGQ12qmJiUVUgjrZH42vOJ+pM8ip7U0RZqc6zRmdl5G7EeNcw3ttiPGnGePKIGG8xx11PJU154DB/Ne1qyh0X4dBFFDEaeq4fPh7Kd4wOvbo5bfLNG4wO/DGRfe/o0CKeE0JWUxywQH2zIA8+OuhvD7uHuq4ZG7YT8ss/+xnSB+QFuqCtngdMpjUyMJ8SRAIIYswQYQgdxlD96WObI7SXo1eDQcmlPi1VQwTdySBqgH5UxMuO59WfYNI0v/2VD1I+0zh/a7bsImXREDUpl9ukvGtEyrttUkLmM+r70GQIoaQ+KhyTNoiSA0hpUTNmtLzTssLc07OyaFqale1p5cv7Rqy832QFOdSHQs8Iho7gBSELjmEFuYenSgv5mhV0WlLokamya37nWzRcNJnfL36c+R0Rx0MEAgdmRwpR5NYDPKUhhUECuwyE/lHz+7cx8LwJA89/HAag6WMGaUsIwz7yFeL1GYpgF0EDBB48FITHULCrMp2vVaaL7cr0oVFl+vCw/eKYyoSrT5zktJXpIdrF8zVSutukfGxEyseHmqxO0C48E+fs+yJl78eG7aFq0OzoOXhEpxE4TJLNjzgqi7CDyY6zJw6cMKAeRYSiAIKMnuqr5n9w+Lx/cNsxTn9qlImf7s1E8n+dcVrUMEtOfMh5iPp4ed84/bkRK5/vbVrs+GzErnfQOG3qIw5Py4rfeJ4+W/2/Z/03GtXfqDz9F1BLBwjB02r+ZAYAANUiAABQSwECFAAUAAgACADoS/g8wdNq/mQGAADVIgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAJ4GAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
 +
Vor: Dreieck ABC, A,B und C element von k, Kreis K<br />
 +
Beh: y= 90<br />
 +
 +
1) Konstruieren eine Parallele zu AB durch C  (Nach dem EP)<br />
 +
2)Der Winkel < ACE ist Kongruent zu alpha  (Wechselwinkelsatz)<br />
 +
3)Delta ist kongruent zu Betha  (Wechselwinkelsatz)<br />
 +
4)Winkel < ACM ist Kongruent zu alpha  (Basiswinkelsatz)<br />
 +
5) Winkel < MCB ist kongruent zu Betha  (Basiswinkelsatz)<br />
 +
6) <ACE+<ACM+<MCB+<BCD= 180<br />
 +
7)alpha+alpha+betha+Betha= 180  (einsetzten der Kongruenzen)<br />
 +
8) 2*(alpha+betha)= 180    (rechenen in R)<br />
 +
9) alpha+betha=90            (rechenen in R)<br />
 +
10) Y=90<br />
 +
q.e.d<br />
  
 
==Umkehrung 1: Satz des Thales==
 
==Umkehrung 1: Satz des Thales==
 
===Umkehrung Satz des Thales===
 
===Umkehrung Satz des Thales===
Ist <math> \overline {ABC} </math> ein Dreieck mit einem rechten WInkel bei <math> C </math>, so liegt der Punkt <math> C </math> auf dem Thaleskreis, wobei <math> \overline {ABC} </math> einen Durchmesser des Kreises <math> k </math>bildet.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
+
Ist <math> \overline {ABC} </math> ein Dreieck mit einem rechten WInkel bei <math> C </math>, so liegt der Punkt <math> C </math> auf dem Thaleskreis, wobei <math> \overline {AB} </math> einen Durchmesser des Kreises <math> k </math>bildet.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)<br />
 +
Anmerkung--[[Benutzer:TimoRR|TimoRR]] 16:13, 26. Jul. 2010 (UTC): Du meinst <math>\overline{AB}</math> ist Durchmesser des Kreises <math>k</math>. !?? Jupp, Danke!--[[Benutzer:Löwenzahn|Löwenzahn]] 16:25, 26. Jul. 2010 (UTC)
  
 
==Umkehrung 2: Satz des Thales==
 
==Umkehrung 2: Satz des Thales==
 
===Umkehrung Satz des Thales===
 
===Umkehrung Satz des Thales===
Ist ein Peripheriewinkel <math>\gamma </math> über einer Sehne <math> s </math> eines Kreises <math> k </math> ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises <math> k </math>.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
+
 
===Kommentar zu den Umkehrungen des Thhlesstzes--[[Benutzer:*m.g.*|*m.g.*]] 20:43, 23. Jul. 2010 (UTC)===
+
<br />Ist ein Peripheriewinkel <math>\gamma </math> über einer Sehne <math> s </math> eines Kreises <math> k </math> ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises <math> k </math>.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 +
 
 +
<br />Ein [[Beweise_von_Studenten#Umkehrung_des_Satz_des_Thales | Versuch eines Beweises]] besser: zwei Beweis-Ideen, eine über Winkelkonstruktion, die andere via Zentri-Peripheriewinkelsatz...
 +
<br />--[[Benutzer:Heinzvaneugen|Heinzvaneugen]] 10:29, 26. Jul. 2010 (UTC)
 +
 
 +
===Kommentar zu den Umkehrungen des Thalesstzes--[[Benutzer:*m.g.*|*m.g.*]] 20:43, 23. Jul. 2010 (UTC)===
 
Es sei <math>\ \alpha</math> ein Winkel und <math>\ k</math> ein Kreis.
 
Es sei <math>\ \alpha</math> ein Winkel und <math>\ k</math> ein Kreis.
 
Der Satz des Thales hat zwei Voraussetzungen:
 
Der Satz des Thales hat zwei Voraussetzungen:
Zeile 66: Zeile 91:
 
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
 
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
  
Satz des Thahles:
+
Satz des Thales:
  
 
Aus V1 und V2 folgt B.
 
Aus V1 und V2 folgt B.
Zeile 81: Zeile 106:
  
 
Aus B und V2 folgt V1.
 
Aus B und V2 folgt V1.
 +
 +
<br /><br />Also fehlt uns noch die
 +
 +
==== Eigentliche Umkehrung des Satz von Thales ====
 +
Mein Vorschlag: <br />Es sei ein Dreieck <math> \overline {ABC} </math> mit den schulüblichen Bezeichnungen. Ist <math>\ \gamma</math> ein rechter Winkel, so ist <math> \ c</math>  identisch mit einem Durchmesser des Umkreises des Dreiecks.
 +
<br />--[[Benutzer:Barbarossa|Barbarossa]] 08:38, 25. Jul. 2010 (UTC)

Aktuelle Version vom 26. Juli 2010, 18:25 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Induktive Satzfindung

--Gubbel 12:10, 21. Jul. 2010 (UTC)

Funktionale Betrachtung

Variante 1

--"chris"07 21:47, 15. Jul. 2010 (UTC)


Variante 2

--"chris"07 21:12, 14. Jul. 2010 (UTC)


Variante 3

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

ikonisches/halbikonisches Beweisen

--"chris"07 17:07, 15. Jul. 2010 (UTC)

Beweisen am Beispiel

induktive Satzfindung der allgemeinen Umkehrung

Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)

Beweisführung

Satz des Thales

Satz des Thales

Es sei k ein Kreis mit einem Durchmesser  \overline {AB} . Jeder Peripheriewinkel von k über  \overline {AB} ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Ein Versuch den Satz des Thales mit dem EP zu beweisen:

Vor: Dreieck ABC, A,B und C element von k, Kreis K
Beh: y= 90

1) Konstruieren eine Parallele zu AB durch C (Nach dem EP)
2)Der Winkel < ACE ist Kongruent zu alpha (Wechselwinkelsatz)
3)Delta ist kongruent zu Betha (Wechselwinkelsatz)
4)Winkel < ACM ist Kongruent zu alpha (Basiswinkelsatz)
5) Winkel < MCB ist kongruent zu Betha (Basiswinkelsatz)
6) <ACE+<ACM+<MCB+<BCD= 180
7)alpha+alpha+betha+Betha= 180 (einsetzten der Kongruenzen)
8) 2*(alpha+betha)= 180 (rechenen in R)
9) alpha+betha=90 (rechenen in R)
10) Y=90
q.e.d

Umkehrung 1: Satz des Thales

Umkehrung Satz des Thales

Ist  \overline {ABC} ein Dreieck mit einem rechten WInkel bei  C , so liegt der Punkt  C auf dem Thaleskreis, wobei  \overline {AB} einen Durchmesser des Kreises  k bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)
Anmerkung--TimoRR 16:13, 26. Jul. 2010 (UTC): Du meinst \overline{AB} ist Durchmesser des Kreises k. !?? Jupp, Danke!--Löwenzahn 16:25, 26. Jul. 2010 (UTC)

Umkehrung 2: Satz des Thales

Umkehrung Satz des Thales


Ist ein Peripheriewinkel \gamma über einer Sehne  s eines Kreises  k ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises  k .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)


Ein Versuch eines Beweises besser: zwei Beweis-Ideen, eine über Winkelkonstruktion, die andere via Zentri-Peripheriewinkelsatz...
--Heinzvaneugen 10:29, 26. Jul. 2010 (UTC)

Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)

Es sei \ \alpha ein Winkel und \ k ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:

  1. \ \alpha ist Peripheriewinkel von \ k
  2. über einem Durchmesser von  \ k.

Die Behauptung des Thalessatzes: \ \alpha ist ein rechter Winkel.

Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.

Satz des Thales:

Aus V1 und V2 folgt B.

Die eigentliche Umkehrung:

Aus B folgt V1 und V2.

Gemischte Umkehrung 1:

Aus B und V1 folgt V2.

Gemischte Umkehrung 2:

Aus B und V2 folgt V1.



Also fehlt uns noch die

Eigentliche Umkehrung des Satz von Thales

Mein Vorschlag:
Es sei ein Dreieck  \overline {ABC} mit den schulüblichen Bezeichnungen. Ist \ \gamma ein rechter Winkel, so ist  \ c identisch mit einem Durchmesser des Umkreises des Dreiecks.
--Barbarossa 08:38, 25. Jul. 2010 (UTC)