Streckenantragen oder das Axiom vom Lineal (SoSe 11)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Der Mittelpunkt einer Strecke

Wir wissen nun, dass eine offene Strecke \overline{AB} die Menge aller Punkte ist, die zwischen \ A und \ B liegen. Vereinigt man diese Menge mit der Menge der beiden Endpunkte \ A und \ B, so hat man die gesamte Strecke \overline{AB}. Zu unseren grundlegenden Vorstellungen von Strecken gehört, dass jede Strecke \overline{AB} einen Mittelpunkt \ M hat. \ M wäre der Punkt auf \overline{AB}, der sowohl zu \ A als auch zu \ B denselben Abstand \frac{| \overline{AB} |}{2} hat.

Definition III.1: (Mittelpunkt einer Strecke)
Wenn ein Punkt \ M der Strecke \overline{AB} ...

Üben Sie sich und ergänzen Sie.--*m.g.* 22:34, 26. Mai 2011 (CEST)

Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
Jede Strecke hat genau einen Mittelpunkt.
Beweis der Existenz und Eindeutigkeit des Mittelpunktes einer Strecke
Die Materie erscheint einsichtig und einfach. Übungsaufgabe?? Nichts ist einfach. Mit den bisher bereitgestellten axiomatischen Grundlagen unserer Geometrie wird es Ihnen nicht gelingen, etwa zu zeigen, dass jede Strecke einen Mittelpunkt besitzt.

Der Knackpunkt bezüglich des Nachweises der Existenz und Eindeutigkeit des Streckenmittelpunktes besteht darin, dass unsere derzeitige Theorie noch nicht genügend Punkte zu Verfügung stellt. Momentan muss unser Raum nicht mehr als 4 Punkte enthalten. Nach Axiom I.7 sind diese vier Punkte nicht komplanar, woraus folgt, dass je drei von ihnen nicht auf ein und derselben Geraden liegen. Damit könnte eine durch zwei verschiedene dieser vier Punkte eindeutig bestimmte Strecke gar keinen Mittelpunkt haben, denn dieser müsste entsprechend Definition III.1 bezüglich unserer zwei Endpunkte auf derselben Geraden liegen.

Es wird Zeit, die Anzahl Punkte unserer Theorie radikal zu erhöhen. Konzentrieren wir uns diesbezüglich zunächst auf einen Strahl \ AB^{+}. Nach unserer Vorstellung von Halbgeraden können wir nicht je zwei Punkten von \ AB^{+} genau eine nichtnegative reelle Zahl (den Abstand der beiden Punkte) zuordnen. Nach unseren Vorstellungen etwa von Zahlenstrahl gibt es auch zu jeder nicht negativen reellen Zahl d genau einen Punkt \ D auf \ AB^{+}, der zu \ A gerade den Abstand \ d hat. Bei Konstruktionsaufgaben finden wir diese Idee im Zusammenhang mit dem Streckenantragen wieder.

Streckenantragen

S 01.jpg S 02.jpg
S 03.jpg S 04.jpg

Das Axiom vom Lineal

Wir sind überzeugt davon, dass unsere Konstruktion entsprechend des vorangegangenen Abschnitts immer funktioniert und der so gewonnene zweite Endpunkt unserer konstruierten Strecke eindeutig bestimmt ist. Die Idee des Streckenantragens müssen wir jetzt jedoch axiomatisch fordern bzw. begründen.

Axiom III.1: (Axiom vom Lineal)
Zu jeder nicht negativen reelen Zahl \ d gibt es auf jedem Strahl \ p genau einen Punkt, der zum Anfangspunkt von \ p den Abstand \ d hat.

Zum Sprachgebrauch. Wir werden in kommenden Beweisen einzelne Beweisschritte häufig mit dem Axiom vom Lineal begründen müssen. Wir werden in einem solchen Fall ggf. auch mit der Existenz und Eindeutigkeit des Streckenantragens begründen. Letzteres ist schließlich nichts anderes als der Inhalt des Axioms vom Lineal.

Existenz und Eindeutigkeit des Mittelpunktes einer Strecke

Nachdem das Axiom vom Lineal formuliert wurde, wird es uns gelingen Satz III.1 zu beweisen.

Jetzt wirklich: Beweis von Satz III.1

noch einmal der Satz:

Jede Strecke hat einen und nur einen Mittelpunkt.

Es sind also zwei Beweise zu führen:

  1. Existenzbeweis: Jede Strecke hat einen Mittelpunkt.
  2. Eindeutigkeitsbeweis: Jede Strecke hat nicht mehr als einen Mittelpunkt.
    (Highlanderbeweis: Es kann nur einen geben.)
Der Existenzbeweis
Es sei \overline{AB} eine Strecke
Behauptung:
Es gibt einen Punkt auf der Strecke \overline{AB} der zu den Endpunkten \ A und \ B jeweils ein und denselben Abstand hat.
Die Behauptung noch mal: \exists M   \in  \overline{AB} : \ \left| AM \right| = \left| MB \right| .

Der Beweis:


Jede Strecke \overline{AB} hat einen Mittelpunkt.
Beweisschritt Begründung
(I) \exists d \in \mathbb{R}^{+} \ : \ d = \left| AB \right| Tragen Sie hier die Begründung ein.
(II) \exists d^{*} \in \mathbb{R}^{+} \ : \ d^{*} = \frac{d}{2} Tragen Sie hier die Begründung ein.
(III) \exists M \in AB^{+} \ : \ \left| AM \right| = d^{*} Tragen Sie hier die Begründung ein.
(IV) \neg \operatorname{Zw} \left( A, B, M \right) INDIREKTER BEWEIS (Beweis durch Widerspruch):

somit gilt die Annahme: \operatorname{Zw} \left( A, B, M \right)

\left| AB \right|+ \left| BM \right| = \left| AM \right|

Da \left| AB \right| = d und \left| BM \right| = x kann \left| AM \right| niemals \frac{d}{2} sein,
da d>\frac{d}{2} , also \left| AB \right|>\left| AM \right|, ist und somit ein Widerspruch vorliegt.
Es stimmt also, dass \neg \operatorname{Zw} \left( A, B, M \right)

(V) \operatorname{Zw} \left( A, M, B \right) und damit M \in \overline{AB} Wegen IV und der Definition der Zwischenrelation
(VI) \ \left| AM \right| + \left| MB \right| = \frac{\left| AB \right|}{2} + \left| MB \right| = \left| AB \right| Definition der Zwischenrelation \ \left| AM \right| + \left| MB \right| = \left| AB \right|
Wegen II und III (\ \left| AM \right|=d^{*}=\frac{d}{2}=\frac{\left| AB \right|}{2})
(VII) \left| MB \right| = \frac{\left| AB \right|}{2} Wegen VI, Rechnen im Zahlenraum der reellen Zahlen \ R
(VIII) \left| AM \right| = \left| MB \right| Wegen VI und VII, Rechnen im Zahlenraum der reellen Zahlen \ R
(IX) \ M ist der Mittelpunkt von \overline{AB} Nach Definition Mittelpunkt

Hilfssatz A:

Voraussetzung:
Es seien \ A und \ B zwei verschieden Punkte. Für den Punkt \ M mit \ M \in AB^{+} möge gelten: | AM | = \frac{|AB|}{2}
Behauptung:
\operatorname{Zw}(A, M, B).

Beweis von Hilfssatz A:

Weil \ M \in AB^{+} gilt entweder
  1. \operatorname{Zw} (A, M, B) oder
  2. \operatorname{Zw} (A, B, M)
(s. Definition Strahl AB^{+})
Falls 1. gilt, gilt unsere Behauptung.
Falls unsere Behauptung nicht gelten sollte, müsste 2. also \operatorname{Zw} (A, B, M) gelten.
Nehmen wir also an, dass \ B zwischen A\ und \ M liegt: \operatorname{Zw} (A, B, M)
Wäre unsere Annahme wahr, müsste die folgende Gleichung gelten: .... (ergänzen Sie selbst!)
Die Gültigkeit diesert Gleichung wäre jedoch ein Widerspruch zu .... (ergänzen Sie selbst!)
Also ist unsere Annahme \operatorname{Zw} (A, B, M) zu verwerfen und es gilt \operatorname{Zw} (A, M, B)
Der Eindeutigkeitsbeweis

Übungsaufgabe

Hinweis: Nehmen Sie an, eine Strecke \overline{AB} hätte zwei Mittelpunkte \ M_1 und \ M_2.