Verschiebungen 2010: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Hilfssatz: Wenn für ein konvexes Viereck \ ABCD gilt:\ AB \| \ CD und \overline{AB} = \overline{CD}, dann ist \ ABCD ein Parallelogramm.)
(Hilfssatz: Wenn für ein konvexes Viereck \ ABCD gilt:\ AB \| \ CD und \overline{AB} = \overline{CD}, dann ist \ ABCD ein Parallelogramm.)
Zeile 96: Zeile 96:
 
Voraussetzung: konvexes Viereck <math>\ ABCD</math>, <math>\ AB \| \ CD</math> und <math> \overline{AB} = \overline{CD}</math><br />
 
Voraussetzung: konvexes Viereck <math>\ ABCD</math>, <math>\ AB \| \ CD</math> und <math> \overline{AB} = \overline{CD}</math><br />
 
zu zeigen: <math>\ AD \| \ BC </math> <br />
 
zu zeigen: <math>\ AD \| \ BC </math> <br />
 +
<ggb_applet width="317" height="356"  version="3.2" ggbBase64="UEsDBBQACAAIAE1bcj0AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VjNcts2ED43T4Hhuab5J8mekZyh5Ytn0mYmTnNopweQXEmoQUIFQFvyWzUP0mfqAiApSooVy3Gn40x1obBYLhbf9+2C5PjtquTkDqRiopp4oR94BKpcFKyaT7xaz07OvLcXb8ZzEHPIJCUzIUuqJ17sR56x1+zizQ9jtRD3hHLr8onB/cSbUa7AI2opgRZqAaC37LReMc6oXL/P/oBcq82EC3JdLWtcRcsabXlZvGOqHZ7aBZec6St2xwqQhIt84g0HmDr++wRSs5zyiZcEzhJNvGhnEk2xmV0IyR5EpY37JvgMLYQo9gCISGRs41O70THUOWcFo5XZjM0DnQi5Z4VeYMhwhCGBzRcGoEHiouVCyOJmrTSUZPUrSIHphAMD9NqNYjdSmBcuOAjsVH9kw8DdDWiNtChCV7ABbC5ZsTW4VpeCb0xLwSo9pUtdS8tp3Jhu9NosgGtJk3BazTk0tgghX0B+m4nVjQMhdqE/rpf2FptQNp8KLiSRBt4BOjTXzF2tj8m08wqsT2A9mhgmaDcfnkfWw14zd7VenFUutWbnYbvrMGiXYYoYg4ERpdhtntMMkFqP1BXT79oBSuC22Wrobvi5LjOsgb4IupjhS8Ucn+7IZ3wLsgLuRFIht7WoFbkzYnRr2UQKyFmJQzfRQEINXb9gAs5awFxCm7irIAeYnQ36Qtwxj0/bJEwOCnPNNbYC3I82ezGVqrFKzL+CamMxZcChBKwRbfVg5dThknpdQxC2ttsqbuY3COP0F7VhVUT5ckHR0sqf0zVWen87Nt5PotjeJK0QLLsDLLilCWDoWAIUTXfTjYbJEkPaiuhhbSFSZDXxTiIfs1ibAFHikQd3t3Vy5WMK3y4cN9w6TL6CzuX3gU7QgBP68XHY5KIsaVWQipa4zg3Mjd1iwkzHJzQwCiI0NFA5HGrdTlAXrYmxh7RqorVYUm+7eegF1mgFStkOp/u97HFCett/jJHg+Xz09IYQDi2mseEBMT2J/Xi02wAP7AH+rJyPcm2IlXhG5kx3MHJD6HWlsSmBLfL9XnMLsDRN/n31UdJKmcPe+fR62JN0fvV96Bw5CFtWkrNvkfo7pHBH51dO53RP59lhnRs1dEBmzxT59mH2H6o8jP3R2fnwhYT+OAFTJnP+CAVNH/ot/ZFc/r5HR36YDjw2Wd4hmb8CPp6GMptDdYe5CakIWQVN4awDtyB5aC0rBPDEPbSGjekh7NUJFqJkK5K2/mnrleJTeBj656MIn9TbH6aRxs0SaWJ0YgowHdhaxBL8ogKwsnM2Y/lhBXStb0cEuRNBhhfzqtDm3VPA9LACtlvf9Fmtb5hYbs0lc5cXqDZse8Og/4tt7SX+4MhHmqcc200tTffQK447totXfmy/bEP7V07uI57C9umE4+iEV0Vn4rsSifw4aejEZ9wwfEV02jf5HTIvHZmpa3H7nP7912FS7etmxwZ6m/sxn7oF0h/F0ehsmAzPz0bDJAkHX2P00ANgGOxTGj6R0r1PBgeIojLv9bzWyLm4/wAzDiuL5LfA3rVEC3u6D/vno2D//D/sDq3Ndwr7aa75NnnxD1BLBwg0mPbJnAQAAM0UAABQSwECFAAUAAgACABNW3I9NJj2yZwEAADNFAAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAANYEAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
  
 
Beweis
 
Beweis

Version vom 18. November 2010, 13:01 Uhr

Inhaltsverzeichnis

Konstruktion des Bildes eines Punkte bei einer Verschiebung

Unter Verwendung der Vektorrechnung (Pfeilklassen)



"Konstruktionsvorschrift": P'=P+\overrightarrow{AB}



Konstruktionsbeschreibung

Gegeben sind ein Punkt \ D und sein Bildpunkt \ D', sowie ein Punkt \ P. Gesucht ist sein Bildpunkt \ P'bei der Verschiebung an \overrightarrow{DD'}

(1) Für den Fall, dass gilt: \ {D, D', P} sind nicht kollinear.

1. Parallele zu \overline{DD'} durch \ P
2. Parallele zu \overline{DP} durch \ D'
3. Der Schnittpunkt der beiden zuvor konstruierten Parallelen ist der gesuchte Punkt \ P'

(2) Für den Fall, dass gilt: \ {D, D', P} sind kollinear.

1. Konstruiere einen beliebigen Punkt \ Q der Ebene der nicht kollinear zu \ {D, D', P} ist.
2. Konstruiere den Bildpunkt \ Q' von \ Q bei der Verschiebung an \overrightarrow{DD'}, wie in (1) beschrieben.
3. Konstruiere nun den Bildpunkt \ P' von \ P bei der Verschiebung an \overrightarrow{QQ'} wie in (1) beschrieben. \ P' ist nun auch der gesuchte Bildpunkt für die Verschiebung an \overrightarrow{DD'}, da \overrightarrow{DD'} und \overrightarrow{QQ'} den gleichen Richtungssinn haben. --Steph85

>Eine gute Konstruktionsanweisung! Nur kann man schreiben: Parallele zu einer Strecke? Oder sollte man nicht lieber die "Overline" in Fall1, Punkt 1 und 2 weglassen? weglassen? --Tja??? 17:11, 17. Nov. 2010 (UTC)

Definition der Verschiebung

...

Eine andere Möglichkeit der Definition?

Es sei \vec{AB} ein Pfeil. Unter der Verschiebung längs des Pfeiles \vec{AB} vresteht man eine Abbildung der Ebene auf sich, mit folgenden Eigenschaften:
Für das Bild eines Punktes P, benannt mit P' muss gelten:
1.  |\ AB | = |\ PP'|
2.  \overline{AB} \|  \overline{PP'}
3. \vec{AB} und \vec{PP'} haben den selbern Richtungssinn
--Tja??? 17:23, 16. Nov. 2010 (UTC)

Sätze

Satz: Jede Verschiebung ist eine Bewegung.

An dieser Stelle wird nur der allgemeinste Fall bewiesen (siehe Skizze), da die Beweise der anderen Fälle laut Herr Gieding immer ähnlich ablaufen.




Es sei \ V eine Verschiebung längs des Pfeiles \overrightarrow{AB} und \ {P,Q} zwei beliebige Punkte der Ebene mit ihren Bildern \ {P',Q'} bei \ V, die voneinander verschieden sind und nicht auf dem Pfeil \overrightarrow{AB} liegen.
Wir haben zu zeigen, dass \overline{PQ} \cong \overline {P'Q'} ist. Es genügt natürlich zu zeigen, dass \overline {PQQ'P'} ein Parallelogramm ist, da in jedem Parllelogramm die gegenüberliegenden Seiten gleich lang sind.

Beweisschritt Begründung
1) \overline {PP'} \| \overline {QQ'} folgt unmittelbar aus der Definition der Verschiebung
2) \overline {ABPP'} ist ein Parallelogramm. folgt unmittelbar aus der Definition der Verschiebung ("Das Bild des Punktes \ P ist der fehlende Eckpunkt des Parallelogramms \overline {ABPP'} .")
3) \overline {ABQQ'} ist ein Parallelogramm. folgt unmittelbar aus der Definition der Verschiebung
4) Aus \overline {AB} \cong \overline {PP'} und \overline {AB} \cong \overline {QQ'} folgt \overline {PP'} \cong \overline {QQ'} (2), (3), Transitivität
5) \overline {PQQ'P'} ist ein Parallelogramm. (1), (4)


--Steph85

Satz 2: Jede fixpunktfreie Bewegung, ... , ist eine Verschiebung.

Satzvormulierungen:
Jede fixpunktfreie Bewegung,
bei der die Geraden durch beliebibige Punkt und ihre jeweiligen Bildpunkte parallel zueinander verlaufen,
ist eine Verschiebung.

oder kürzer, aber ungenau:
Jede fixpunktfreie Bewegung, bei de die Parallelität der Bild-Bildpunkt-Geraden gegeben ist,
ist eine Verschiebung.
--Tja??? 18:07, 17. Nov. 2010 (UTC)

Satz: Verschiebung am Pfreil AB ist identisch mit der Verschiebung am Pfeil DE unter der Vorraussetzung \ AB \| \ DE ,  \overline{AB} = \overline{DE} und die Pfeile AB und DE den gleichen Richtungssinn haben.

Hilfssatz: Wenn für ein konvexes Viereck \ ABCD gilt:\ AB \| \ CD und  \overline{AB} = \overline{CD}, dann ist \ ABCD ein Parallelogramm.

Voraussetzung: konvexes Viereck \ ABCD, \ AB \| \ CD und  \overline{AB} = \overline{CD}
zu zeigen: \ AD \| \ BC

Beweis

Beweisschritt Begründung
1) \overline {AC} \cong \overline {AC} trivial (Reflexivität der Streckenkongruenz)
2) <DCA  \cong <BAC Wechselwinkelsatz+Voraussetzung
3) \overline {ACD} = \overline {CAB} SWS: Voraussetzung+(1)+(2)
4) <BCA\cong <DAC (3), Def. kongruente Dreiecke
5) \ AD \| \ BC (4), Umkehrung des Wechselwinkelsatz