Zusatzaufgaben 2 (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
(10 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 
+
== Aufgabe 1 ==
==== Aufgabe 1 ====
+
 
Wir gehen von folgender Implikation aus: Wenn zwei Winkel Nebenwinkel sind, so sind sie supplementär.<br />
 
Wir gehen von folgender Implikation aus: Wenn zwei Winkel Nebenwinkel sind, so sind sie supplementär.<br />
 
a) Wie lautet die Kontraposition dieser Implikation?<br />
 
a) Wie lautet die Kontraposition dieser Implikation?<br />
 
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?<br />
 
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?<br />
 +
 
[[Lösung von Zusatzaufgabe 2.1 (SoSe_12)]]
 
[[Lösung von Zusatzaufgabe 2.1 (SoSe_12)]]
  
  
==== Aufgabe 2 ====  
+
== Aufgabe 2 ==
Beweisen Sie die folgende Implikation 
+
Beweisen Sie mit Hilfe einer Wahrheitstabelle:<br /><br />
'''Für alle n  <math>\epsilon</math> <math>\mathbb{N}</math> gilt: n ist gerade <math>\Rightarrow</math> n<sup>2</sup> ist gerade.'''
+
<math>(\ A \Rightarrow B) \  \Leftrightarrow  (\neg B  \Rightarrow \neg A)</math><br />
  
* a) direkt
+
Inwiefern hilft Ihnen diese Äquvalenz, wenn Sie einen geometrischen Satz beweisen wollen?<br />
* b) indirekt
+
* c) durch Kontraposition
+
 
[[Lösung von Zusatzaufgabe 2.2 (SoSe_12)]]
 
[[Lösung von Zusatzaufgabe 2.2 (SoSe_12)]]
  
==== Aufgabe 3 ====  
+
== Aufgabe 3 ==  
 
Beweisen Sie die Äquvalenzaussage
 
Beweisen Sie die Äquvalenzaussage
'''Für alle n  <math>\epsilon</math> <math>\mathbb{N}</math> gilt: n ist gerade <math>\Leftrightarrow</math> n<sup>2</sup> ist gerade.'''
+
'''Für alle n  <math>\epsilon</math> <math>\mathbb{N}</math> gilt: n ist gerade <math>\Leftrightarrow</math> n<sup>2</sup> ist gerade.'''<br />
 +
 
 
[[Lösung von Zusatzaufgabe 2.3 (SoSe_12)]]
 
[[Lösung von Zusatzaufgabe 2.3 (SoSe_12)]]

Aktuelle Version vom 19. April 2012, 09:46 Uhr

Aufgabe 1

Wir gehen von folgender Implikation aus: Wenn zwei Winkel Nebenwinkel sind, so sind sie supplementär.
a) Wie lautet die Kontraposition dieser Implikation?
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?

Lösung von Zusatzaufgabe 2.1 (SoSe_12)


Aufgabe 2

Beweisen Sie mit Hilfe einer Wahrheitstabelle:

(\ A \Rightarrow B) \  \Leftrightarrow  (\neg B  \Rightarrow \neg A)

Inwiefern hilft Ihnen diese Äquvalenz, wenn Sie einen geometrischen Satz beweisen wollen?
Lösung von Zusatzaufgabe 2.2 (SoSe_12)

Aufgabe 3

Beweisen Sie die Äquvalenzaussage Für alle n \epsilon \mathbb{N} gilt: n ist gerade \Leftrightarrow n2 ist gerade.

Lösung von Zusatzaufgabe 2.3 (SoSe_12)