Test: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 13: | Zeile 13: | ||
Aufgabe 02: | Aufgabe 02: | ||
− | Bilden Sie die Umkehrungen der Implikationen aus | + | Bilden Sie die Umkehrungen der Implikationen aus Aufgabe 01. Formulieren Sie in den Fällen in denen es sinnvoll ist, Implikatione und Umkehrung als Äquivalenz. |
Version vom 26. April 2012, 09:41 Uhr
Übungsaufgaben Implikationen, Umkehrungen ....
Aufgabe 01: Bringen Sie die folgenden Implikationen in die Form Wenn-Dann
- Jedes Quadrat hat vier rechte Innenwinkel.
- Der Mittelpunkt des Umkreises eines rechtwinkligen Dreiecks liegt auf der Hypotenuse dieses Dreiecks.
- In einem konvexen Viereck schneiden sich die Diagonalen des Vierecks.
- Die Geraden, die durch die Diagonalen einer Raute eindeutig bestimmt sind, sind Symmetrieachsen von .
- Es sei ein Paralellogramm. Es gilt: .
- Die Innenwinkelsumme im Dreieck beträgt 180°.
Aufgabe 02: Bilden Sie die Umkehrungen der Implikationen aus Aufgabe 01. Formulieren Sie in den Fällen in denen es sinnvoll ist, Implikatione und Umkehrung als Äquivalenz.