Strecken: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Satz II.4:) |
*m.g.* (Diskussion | Beiträge) (→Satz II.4:) |
||
Zeile 100: | Zeile 100: | ||
===== Satz II.4: ===== | ===== Satz II.4: ===== | ||
− | ::Es sei <math>\ O</math> ein Punkt einer Geraden <math>\ g</math>. Die Teilmengen <math> \ OA^+ \setminus \left\{ O \right\}</math>, <math>\setminus \left\{ O \right\}</math> und <math> \ OA^- \setminus \left\{ O \right\}</math> bilden eine Klasseneinteilung der Geraden <math>\ g</math>. | + | ::Es sei <math>\ O</math> ein Punkt einer Geraden <math>\ g</math>. <br />Die Teilmengen <math> \ OA^+ \setminus \left\{ O \right\}</math>, <math>\setminus \left\{ O \right\}</math> und <math> \ OA^- \setminus \left\{ O \right\}</math> bilden eine Klasseneinteilung der Geraden <math>\ g</math>. |
Version vom 24. Mai 2010, 15:17 Uhr
Inhaltsverzeichnis |
Strecken, intuitiv
Punkte, Geraden und Ebenen können wir in unserer Geometrie nicht definieren. Für Strecken wird uns das gelingen.
Eine intuitive Vorstellung von Strecken haben wir schon: Eine Strecke ist die kürzeste Verbindung zwischen zwei Punkten. Diese Vorstellung gilt es nun zu präzisieren.
Grundlegend dafür, um was für eine konkrete Strecke es sich jeweils handelt scheint die Angabe zweier Punkte zu sein (kürzeste Verbindung zweier Punkte).
Das Attribut kürzeste deutet auf das Messen von Längen hin. Das Messen von Längen wird dann auch der Knackpunkt bezüglich einer Definition des Begriffs der Strecke sein.
Längenmessung
Messen: Andere Länder andere Sitten
Rory, ein irischer Schüler, wechselt für ein Jahr an die IGH im Hasenleiser. Die Beibehaltung gewisser Gewohnheiten aus Irland könnte für Rory in Deutschland Probleme mit sich bringen: In Irland schmeckt das Guinness besser und vor allem wird es in der Maßeinheit Pint ausgeschenkt. Ein Pint ist etwas mehr als ein halber Liter: 0,56826125 l.
Rory ist ein sehr ordentlicher Schüler und hat sein Schullineal aus Irland mitgebracht. Zum Messen würde dieses in Deutschland allerdings nur dann etwas nützen, wenn es über eine zweite Skale in cm verfügen würde.
Die Idee der Längenmessung
Strecken werden bereits in Klasse 1 gemessen. Was ist das eigentlich, das Messen von Strecken. Wie würden Sie es den Schülern der Klassenstufen für die Sie ausgebildet werden erklären? Ergänzen Sie hier:
Der Abstand zweier Punkte
Die ersten beiden Abstandsaxiome
Axiom II.1: (Abstandsaxiom)
- Zu je zwei Punkten und gibt es eine eindeutig bestimmte nicht negative reelle Zahl mit .
Definition II.1: (Abstand)
- Der Abstand zweier Punkte und ist die Zahl, die nach dem Abstandsaxiom den Punkten und zugeordnet werden kann.
Schreibweise: .
Axiom II.2:
- Für zwei beliebige Punkte und gilt .
Die Dreiecksungleichung
Schüler entdecken die Dreiecksungleichung
Dreieckskonstruktionen sind seit jeher fester Bestandteil des Geometrieunterrichts in der Schule. Neben solchen allgemeinen Zielen wie Erziehung zur Exaktheit und Sauberkeit bei Konstruktionen, geht es bei diesen Aufgaben auch darum, dass die Schüler die Gesetzmäßigkeiten ihrer Umwelt durch eigene Tätigkeit selbst erfahren.
Die einfachsten Dreieckskonstruktionen sind die, bei denen die Längen der drei Seiten eines Dreiecks gegeben sind. In der Sprache der Abstände: Alle drei Abstände die die Eckpunkte des Dreiecks zueinander haben sind gegeben.
Abstände sind nach dem Abstandsaxiom reelle Zahlen. (Maßeinheiten wie m und cm sind in der „reinen“ Mathematik irrelevant.)
Der Lehrer, der Konstruktionsaufgaben auf das eigentliche Generieren einer Zeichnung durch die Schüler reduziert, verschenkt eine Reihe von Potenzen hinsichtlich verschiedenster Ziele des Mathematikunterrichts. Stellvertretend sei in diesem Zusammenhang das Begründen genannt.
Aus didaktischer Sicht werden Konstruktionsaufgaben zu einem bestimmten Problemkreis erst dann vollständig, wenn die Schüler sich sowohl mit Aufgaben mit mehreren Lösungsmöglichkeiten als auch mit unlösbaren Aufgaben auseinandersetzen müssen.
Experimentieren Sie mit dem folgenden Geogebraapplet und klassifizireren Sie die Typen von Konstruktionsaufgaben, die sich für Dreieckskonstruktionen nach SSS ergeben:
Das Axiom der Dreiecksungleichung
Axiom II/3: (Dreiecksungleichung)
- Für drei beliebige Punkte und gilt:
- Falls , dann ist eine der folgenden Gleichungen erfüllt:
- Ist umgekehrt eine dieser drei Gleichungen erfüllt, so sind , und kollinear.
Übung zum Axiom
- Welchen Teil des Axioms demonstriert das folgende Applet?
Definitionen und Sätze
Definition II.1: (Zwischenrelation)
- Ein Punkt liegt zwischen zwei Punkten und , wenn gilt und der Punkt sowohl von als auch von verschieden ist.
- Schreibweise:
Unmittelbar einsichtig sind die folgenden beiden Sätze:
Satz II.1
- Aus folgt .
Beweis von Satz II.1
- Beweis: trivial (Der Leser überzeuge ich davon.)
Satz II.2:
- Aus folgt .
Beweis von Satz II.2
- Beweis: trivial (Der Leser überzeuge ich davon.)
Satz II.3
- Es sei mit sind paarweise verschieden.
Dann gilt oder oder .
- Es sei mit sind paarweise verschieden.
Beweis von Satz II.3:
Der Begriff der Strecke
Definition II.2: (Strecke)
- Das können Sie selbst.
Halbgeraden bzw. Strahlen
Definition II.2: (Halbgerade, bzw. Strahl)
Satz II.4:
- Es sei ein Punkt einer Geraden .
Die Teilmengen , und bilden eine Klasseneinteilung der Geraden .
- Es sei ein Punkt einer Geraden .