Basiswinkelsatz: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Kommentar)
(Lösungsversuch 01 mit Kommentar)
Zeile 81: Zeile 81:
 
====Kommentar====
 
====Kommentar====
 
Völlig korrekt! --[[Benutzer:*m.g.*|*m.g.*]] 22:28, 7. Mai 2012 (CEST)
 
Völlig korrekt! --[[Benutzer:*m.g.*|*m.g.*]] 22:28, 7. Mai 2012 (CEST)
 +
 +
===Lösungsversuch 01 mit Kommentar===
 +
====Die Folie====
 +
<iframe src="http://www.ph-heidelberg.de/wp/gieding/uebungen/04_05_12/Student Submissions_files/Student Submissions_039.png" width="720" height="540" frameborder="2"></iframe>
 +
====Kommentar====
 +
So geht es natürlich auch. --[[Benutzer:*m.g.*|*m.g.*]] 22:30, 7. Mai 2012 (CEST)
 +
  
  

Version vom 7. Mai 2012, 21:30 Uhr

Übung mit dem Classroompresenter vom 04. Mai 2012

Inhaltsverzeichnis

Alle Deck's

HTML-Dokument mit allen Folien der Übung zum Durchblättern

Folien aus der Übung hier einbinden:

Folie im oben verlinkten html-Dokument auswählen. Rechte Maustaste drauf, Bild in neuem Tab öffnen. Dort die Adresse des Bildes auf meiner PH-Seite kopieren, Mittels iframe hier einbinden. Wie das funktioniert sehen sie im Quelltext der vorangegangenen Beispiele. ----*m.g.* 18:23, 6. Mai 2012 (CEST) (CEST)

Es reicht auch aus, wenn Sie den Quelltext
<iframe src="http://www.ph-heidelberg.de/wp/gieding/uebungen/04_05_12/Student Submissions_files/Student Submissions_043.png"
 < width="720" height="540" frameborder="2"></iframe>

einfügen und nur die Nummer der Folie ändern (Student Submissions_043.png etwa in Student Submissions_045.png ändern) Viel Erfolg!

Aufgabe 1

Aufgabenstellung

Man formuliere den Basiswinkelsatz ohne die Form "Wenn-Dann" zu benutzen.

Lösungsversuch 01 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Der Basiswinkelsatz wird auf der Folie zweimal formuliert. Die obere Formulierung ist korrekt. Wer ganz pingelig ist, könnte höchstens mokieren, dass es eigentlich "... zueinander kongruent." heißen müsste.

Die untere Formulierung impliziert, dass alle drei Innenwinkel (s. eingekreister bestimmter Artikel) des Dreiecks zueinander kongruent sind. Das wäre dann wohl nicht korrekt.--*m.g.* 17:23, 7. Mai 2012 (CEST)

Lösungsversuch 02 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Auch wenn der Begriff Basiswinkel nicht verwendet wird, geht diese Formulierung in Ordnung. Der Beweis wird zeigen, dass die beiden zueinander kongruenten Innenwinkel Basiswinkel des betrachteten Dreiecks sein müssen.--*m.g.* 17:29, 7. Mai 2012 (CEST)

Lösungsversuch 03 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Auch wenn es für den Beweis eines Satzes sinnvoll sein kann, praktisch als Quintessenz die wesentlichen Aussagen zu eliminieren, die Aufgabe, den Satz zu formulieren, hat man dann natürlich nicht erfüllt.--*m.g.* 17:36, 7. Mai 2012 (CEST)

Lösungsversuch 04 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Hört sich ein wenig wie eine Definition an. Unterstellen wir aber, dass der Begriff gleichschenkliges Dreieck bereits definiert wurde, was natürlich vor der Formulierung des Basiswinkelsatzes geschehen sein muss, dann ist der Satz korrekt formuliert.

Der unbestimmte Artikel "ein" bedeutet, dass ein beliebiges Dreieck gemeint ist. Beliebig ist so zu verstehen, dass kein gleichschenkliges Dreieck vor einem anderen gleichschenkligen Dreieck vorzuziehen ist. Letztlich sind damit alle gleichschenkligen Dreiecke gemeint. Ergo: Für alle gleichschenkligen Dreiecke gilt: es hat zwei kongruente Basiswinkel.

Mitunter formuliert der Mathematiker auch mit dem bestimmten Artikel: Das gleichschenklige Dreieck hat zueinander kongruente Basiswinkel. Gemeint ist in diesem Fall die Klasse der gleichschenkligen Dreiecke. Besser: Für jeden Repräsentanten aus der Klasse der gleichschenkligen Dreiecke gilt: Die Basiswinkel sind kongruent zueinander.--*m.g.* 17:44, 7. Mai 2012 (CEST)

Lösungsversuch 05 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Das ist nicht der Basiswinkelsatz, sondern seine Umkehrung.--*m.g.* 18:02, 7. Mai 2012 (CEST)

Lösungsversuch 06 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Da keine Winkel eine Rolle spielen, kann es sich nicht um den Basiswinkelsatz handeln. Untersuchen wir die Formulierung trotzdem genauer. In einem Dreieck gibt es zwei kongruente Seiten versteht der Mathematiker wie folgt:

Aus der Verwendung des unbestimmten Artikels folgt, dass jedes beliebige Dreieck gemeint ist. Die obige Formulierung ist damit äquivalent zu: Jedes Dreieck hat zwei kongruente Seiten. Demzufolge müsste jedes Dreieck gleichschenklig sein.--*m.g.* 18:02, 7. Mai 2012 (CEST)

Lösungsversuch 07 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Die deutsche Rechtschreibung gilt auch in der Mathematik. Ansonsten ist die Formulierung absolut in Ordnung. "Im gleichschenkligen Dreieck" ist genauso wie "das gleichschenklige Dreieck" zu verstehen. Siehe hierzu den Kommentar zu Lösungvorschlag 04.--*m.g.* 18:08, 7. Mai 2012 (CEST)

Lösungsversuch 08 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Es hat keinen Sinn, wenn nach dem Basiswinkelsatz gefragt ist, vorsichtshalber alles aufzuschreiben, was man zu gleichschenkligen Dreiecken weiß. Wäre unsere Aufgabe eine Klausuraufgabe und obige Lösung in der Klausur angeboten worden, gäbe es keinen einzigen Punkt dafür. Viel hilft nicht viel!--*m.g.* 18:15, 7. Mai 2012 (CEST)

Aufgabe 2

Aufgabenstellung

Nennen Sie die Voraussetzung und die Behauptung sowohl vom Basiswinkelsatz als auch von dessen Umkehrung in Kurzform. Beziehen Sie sich dabei auf die Skizze.

Lösungsversuch 01 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

Völlig korrekt! --*m.g.* 22:28, 7. Mai 2012 (CEST)

Lösungsversuch 01 mit Kommentar

Die Folie

[ www.ph-heidelberg.de is not an authorized iframe site ]

Kommentar

So geht es natürlich auch. --*m.g.* 22:30, 7. Mai 2012 (CEST)