Benutzer:Oz44oz: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Tangentenviereck-Spezialfall)
Zeile 3: Zeile 3:
 
== Tangentenviereck-Spezialfall ==
 
== Tangentenviereck-Spezialfall ==
  
<ggb_applet width="1008" height="411"  version="4.0" ggbBase64="UEsDBBQACAAIABG9uUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAARvblAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d2ZLbxhV9dr6ii6lKJZUhpzdsyoxdM5LGsiPFrkhZKi9TINAE4QEBGgBnUflf8uJv8JPf9GO53Q1wAzdAwyE4jkockECjl3PuPX270QDOvrofRehWpFmYxOcd0sMdJGIv8cM4OO9M8kHX7nz15e/OApEEop+6aJCkIzc/73CZMvTPO97As7lt213ODKfLfUq7NhP9LiXwTwxY32Z+B6H7LHwRJ39zRyIbu5547w3FyH2beG6uCh7m+fjF6end3V2vLKqXpMFpEPR79xlkANWMs/NO8eUFZLdw0h1TySnG5PTf797q7LthnOVu7IkOkk2YhF/+7ouzuzD2kzt0F/r5EBqMKe+goQiDITTKMKFRpzLVGBAZCy8Pb0UG5879VI3OR+OOSubG8vgX+huKpu3pID+8DX2Rnndwj5i2ww1GqNFBSRqKOC9SkaK00zKfs9tQ3OkM5TdVFtQvT5Ko78q80E8/IYopRidyQ/SGwsY09SGs92GmN1RvuN4YOg3Xp3OdlOs0XKfhrINuwyzsR+K8M3CjDMAL40EKxE1/Z/lDJFR9ih2zdpMTaFMWfoTEDAOYGm2JMz6RHxM+HBcozzWSzJWap5OahZZFQgn27mXSz2opmxZqsWqZ1FjTTnNDobrhOzXUmMMWilL/1adSItvUzOUS9e/PK9DkT9LEs9PSV84K90DZUKYtzCcXo0w6DHOQ4Ui7J8gA5zAtMHMDEQc2FkXgDogYiBvwk9jIlFsLMQsOcMSQjWQ6wpDyDsOGP9xSmZnIgMzkXgucEhEoiCODIaKciiNwJaQcE5yUMkhhGMiAk2TxhMosmIm4Cb+YjTjUUfqkRSAhgxPhNxRPESOIyZOJhaiJTJkf4dLXTVtWHbKkyMTIJDJDcGtwae3OkN5GTLbGLOAK4/EkX4DIG/nl1zwZT7mA1CBIM8HTArWgh1+cRW5fRNBHvJdMInTrRtIjVEGDJM5RSaKt9wWpOx6GXvZe5DmclaEf3Fv3rZuL+ytInZVlq7ReEmffp0n+MokmozhDyEsiPK1zEpG573Raa/jB5g7w+QPG3AFz7ru1stwEjqBJJqD8JM3K5K7vfyNTzKQBkPwujh4uU+HejJNwsRlnp6q7ORMTLwr90I3/CcYqS5G4oFnvI/Wq7H2YzcqaJKn//iEDE0b3/xFpct6xec/hlmFywgizbCk5D/oI5UaPMood2zSYDSnA/TLPjZQC92AftUxuEGoalg1S8LD6mOFYumxxO+XIvRez5gZpOLUW+f2b7DKJ/OlhBcBLd5xPUhU5QP1S2aqLOIiEMhKlt9Atezf95P69tg6m8/rwMIZfWFegHyjgEYgDNaDDDIptX29VGlmzaSqs0mCVApfmFvrT48ShKoXa9vVWpQL71VUrWsrKVhJcFhNmStJwp3CcUq6k9ctOfhKH+dvyRx56N0VTiT7hb5NRX0xtaDFP8lh5np0uGdnZjUhjERU2DVxOkkmmXXTO3H3hhSP4qQ8UkLiSrn9ABfReXwSpKCseqahMA6aO4nlrrexWWV2lyeib+PYD2MJSBc5Oy1qeZV4ajqXJoT70AzdiZlV+mLnQjfjz50knhKZ7srsAeHIJDbjnJB8mqYq7QFVgK30vEiOItVCuzEtZ6BTmdyp8k3iipP8DCNu079PHZ4TB4ZWmpozSjcZDV4Z4RaMj90GkCzCo/N4l/iI4g/Be+HrPrCQFZIbui+D6AcqQ2486LNdhqWyEdJ4FxdV7lxgAs9Dt34LE5TWpYrFok3sGw43BEBWdoHhjbehjIbSP6CrDlzFkp6RlQbKXETMfCTEvGY3c2EexilpehqkXic6sG3WxNCHkEo2fxmaSl4c8ve/stMimQgEYcehN8fVWUbBgjnNtXkcBbk7ATAhz6KRvYCiSKbXOC11WX96Evi9UgKb7iTAQ8S3UFPpIGN3hYuz4gHX56GO55x4w6qpdD6TY9ZHMEQTUp+E9uijTX5SpLmhB6wUr8ryAXr2rd0GX3qVlFuLHWFc/00opI5VwAABvJPV75QaLnHoryHyzmcpFb3rTSFfUyDAotjXd6bvBIBO59AGiXaDL9+1seCZPi//4HnxvV5qu6tB0dUiaiAbP3DdN9iP3Is14eV2Hl9cH5MXQ3mM8VVfV3Q8vHyDwEhVmrnRntYog95rqg5uJkp3ElAd5zpagYb9dVhVOXKDZZdN+oVG/ttSXhKNxFHph3gT01+tB7zcAvd8e0MseQPfGEnW7LaC/WQ+6D/vqgu4/Rnj8KJh3S0vnPc6x7cghv4GxSc3XXTmtqFmwbWLZnDgWxiCHVB1qBS+XJfirmBENmBHbmXlqd5h6A+VP7w7vRTCqwl6MUq4qkA+u6WawsyK/KZir5GeXUUo5jbNPwDfLj9Ucb4VZJLvzb+JcpJlQEw/V6ZQbIcZyHuu7+EPqxpm8TLY4vm9I3KrhZbBteLlMXdB0gLkH6rrLHTYxnyt3byrMDesyN2wXcys7nvk4wF4aElamWp8Hs68rzIb1eA1bw2olfj5qf5xmvMTbNPQTK/T0VZ0h6qtGQ1R5UTTQm77e1B6fdomtfW3jxMGMWKtHsMGpxQzLxARcEbxVj3EdsyK9jzL0XAf+dIS5CvyXdcB/+bTgb0CX0HJ65WBo9q9pBc3LOmheHsqUuZ6X2jhRuQpqPbZ/Qqynw3R/heVe1MH64nCy4SjsGNmxl1+vG3uD//skegiSeAn8Vxr6l7Ch0liRywrQF2j4ZwjZejeFvg+U0FPJGNVn9K8ZfOHQFW0LvsZFNUpOpjk3HcjVH5ouX/ImmDZVq/UXAKsju4ZzHI9TW7JudGeXIQnf2+zSXkKSzWj726fxHh/tOe3V2Bqr5aDChb0cHpp7m9o4ABdSGw7Ihamlmdf0i669Y6x+XGSELZOhrj3VoVWzqpqAnmWZzDBt5nDoKg1sqN7yeCjZLQ7y5odPqnuthkPf1gmHvm3G9D4i+f0uHVk9jfBtGdosgyjqTSOIRlElxbzRLMJcUFkMRfnqseha5dp1glyuDGyxm6wm9eW6qXa/Hqn+gUhlOsonO8pj3QuvR8lpcd38ssKpV49T7zPWGypmK90a2ZVVplldPdj+bbJ6uW4Wt1+P1f7hWNVdllUzcNzxetlRklqstqhOELj1SHWbye/CzHyzFUhdUtC6o6/+Jmi9WHstrR6tw8PRapcLvnYcdzRY6MG3LPQ4SuqLpTyvKtQH9agPmq0qxHSeetxo8rWkfsc4uct6zuI/8/+WMJsK/rZiCYN6ljA4nCVMV2ezeuK+yiLUCGr5wLMjvRhPvauQntUjPTvozRUrFv7uf9HkoddHVMdLeT3O8pZx9gQr+w4dYVX9zK27Wsk98I1MK2MoTZy1LKPPjMR362Klfl0S++0jcWVY9FGuIDhiZ3wVFg8nWSTSL5ccDFYsOUg2UxlPRiKdu7EwUXlDfSYlxCVeu/BGGtU/vCbr6+9es3otcIsLdE/bhkFxsaM667dt0fRy/b3iYu/T1n+o6x9U6v9Dvdr/sFx33nMYZjY2DctkhFHjdZfRfbemr1vjVlpzU681N/tkYuuVs2D9lbOvN7dj8crZ14daSIRrLSPa71W1jQuG3mmcv67gXKznmeorK1cKMb1SaLSNh5XLg+jjLA/apYclBlM0GmS1ee5jadCKBRKfWdXPDsbXDomPKxzYtkyoRcjXvWnjuKAetQdovC3irTPr0zYWamj4Gy3N1TFpIbpMJxvNVntyreHetghzjYqz56zio6ZDun2Y+Jop7nV3F32srr/aNsXdNrvfJvS8PeSsv8VrftJy51u8josJr5Vd7rOc/Fgt/m/KS/ibxZ+X4k91Qq8Uf/eaNxJ//rzFv+F92/sM4X+zau+1Se2f1Sz5tksT7cL9Ue+kbhsVu2j9xcJkTXUpXiHNRrnuvNB699ooJmsaBvrGc9Z60Sat/02pi9Ee3Ove0X9cUI/aFKQ/4XOwDibU0yUdm4XaLIW6mFUflUF5v2FQbj5voW6RFR/7IpdtgtGiyO/YBWPb0pEWQX3s1yxqaPNV+YiENdpslQ8MMUptLoJo/9popM3Wem3e8nygI9DmfpuCuSN/0t02aW4R0nXvfDsuqP02Qd2tLIXeEnG0Dev62ly91buQUrt8KupUm81Sm81G2mw/57jZa5MZ19TmtgUY27TZbA/SlVhufw/5Pog2twjq53WXykZp/nqLNDulNJulNFtamgcNpzSc5y3NLbLiYx/8bdNmqz1QP+HDzw8A9aBNUxrPS5s3L/f3Kqocbdbc5eX+0QFuvPCKiZZK3eN6dY8PUHc98CDF44oWaj+uV/vx49Ze3I9TMGf51p2igA/iPge3ggPnnT/8OEnyv1yKOxEI5IcCfT+Jb3KBXp+gKzSBRr/p/eH3BEOKpO96w1wnei/CXMTRp5/lqyqQe9I/8U78E3EyOAnUScMTna+qy2Jrcyi8s1iTRgKxrv011UG9bjUD/AdlsfrVq12zU/p1GUPkbpqr1zYh9VhdEBGHWY7tOJbNTEspi9UjBuaYEIotmxBG5m/e2E4KXSDl3adfAhCUoTh9FQ4GIhXxx1CkwMBV6gLsL5C4zaMeGoU5evvpl2wSB9kwjAZCMVDsUdypP6SH/uVm6MaN4yxH/gSJ9EbEsYi/UocpHBYRFIb+DpYQjT79/Om/YXCjeJ47qV+aQXEa66H33tCdgFWk2jImo5GAZFkejkagfOiPt1Dprvzzp2WzKfLgPXThw7mpQHwpiWzJrUiDSEgcgBqhmqtO8yFzXZr8Bo4lEVo8/6vdrbDhhf9WWKGFTYq5g22TW/rtaEbPoBhjtUqAm1ax5HFnO2QLdvjXFCBNw8kIDT79mhavpxGxpBSC8heKjBkRAZhP/OnXvkijUH71p6RAm4BOzWVvZpgu+jPqw0fAZ4DOkQdbHz4BfIa7E1jjgqCXxH6oX0Mm30JcpP6xym75+Br1BIvPe5zwZ3BMcc+kDrfl+4kZbCz9mKMu6XG5Bso2CDcY8E3oWpYXoOsnSSTc2ejqx+X+Zg6qz3zFQrMn/thEqyllGx72sd2K+YIVl4K4s0FtC1z3+t6qZRMgPcshmGATY2YAPhqgLnT3zGaO5RjUMol8sbVRz9ONVRjpbmR3pBrOKe4HKkJ7mBgGZYQ44BfUYMVA1rRtGFQ4hHCOKbWcekCZS/FSnqpucHeQto3uZ+a0Wp7SFb7W8JmVlcfmrJMmvKxM7uQ+jEI3fagKRZUFm0IUBBRYBmaOXRqsaRHKOQNTdTAx5ZN16tBgLdAgu6DdGdg26G/AAG78LMIn4sBxqGNDXOAYWL2+XnUbJsSttoUZHCAQG/B6FNiLFMDg1huGArr5gZv2w6CGS9iPT0jzZ009FSEWBGYGJZSCjtPyTabgFKZBCIaBBAeZqkeIs0DIQgDc250MZw/61DgWeCIyLM4tJkMr5jDTLm8XMiHO4oxgZlIC+xtGVeljRlXNusq5l/MWj8qneMPbj+bbdgokZ1AzNW0lfwciCUQ/db/8H1BLBwiIcpkNGhAAAPOKAABQSwECFAAUAAgACAARvblARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIABG9uUCIcpkNGhAAAPOKAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAshAAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
<ggb_applet width="1008" height="411"  version="4.0" ggbBase64="UEsDBBQACAAIACK/uUAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAiv7lAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d23LjxrV9dr6ii6lKndQRqb7gOkeyS5oZeewzE7syk+TUeVGBQBOEBQI0AOoylX/JS34gNycPeZt3f1N2dwMUQYAXQKIIynZZAxJo9GWtvVfvbjSaJ1/cTkJ0zZM0iKPTHhngHuKRG3tB5J/2Ztmob/W++PwXJz6PfT5MHDSKk4mTnfY0kTLwTnvuyLU0y7L6GtPtvuZR2rcYH/Ypgf/4iA0t5vUQuk2DF1H8G2fC06nj8vfumE+ct7HrZLLgcZZNXxwf39zcDIqiBnHiH/v+cHCbQgZQzSg97eUfXkB2pZtumExOMSbH//furcq+H0Rp5kQu7yHRhFnw+S8+O7kJIi++QTeBl42hwZhqPTTmgT+GRukGNOpYpJoCIlPuZsE1T+Heha+y0dlk2pPJnEhc/0x9QuG8PT3kBdeBx5PTHh4Qw7I1nRGq91CcBDzK8lQkL+24yOfkOuA3KkPxSZYF9cviOBw6Ii/0xz8iiilGR+JA1IHCwTDUJazOYaYOVB00ddBVGk3drqmkmkqjqTQa66HrIA2GIT/tjZwwBfCCaJQAcfPvaXYXclmf/MR9u8kRtCkNPkJihgFMhbbAGR+JPwP+NJyjvNBIslBqlswaFloUCSVY25dJH9RSNi/UZNUyqb6incaaQlXDt2qovoAtFCX/l3+VEtm6Zi6XqL4/rEBDe5ImnhwXvnKSuwdKxyJtbj4Zn6TCYZiNdFvYPUE6OIdhgpnriNhwMCkCd0BER5oOX4mFDHE0ETPhgoYYspBIRxiS3qFb8I9myswMpENm4qwJTokIFKQhnSEinUpD4EpIOiY4KWWQQteRDjeJ4gkVWTADaQZ8YxbSoI7CJ00CCRncCN+heIoYQUzcTExEDWSI/IgmfN2wRNUhS4oMjAwiMgS3BpdW7gzpLcREa4wcriCazrISRO7EKz5m8XTOBaQGQboXPCVQJT387CR0hjyEPuK9YBKhaycUHiELGsVRhgoSLXXOT5zpOHDT9zzL4K4UfedcO2+djN9eQOq0KFumdeMo/TaJs5dxOJtEKUJuHOJ5neOQLHym81rDF7ZwQVu8oC9cMBY+m7XlxnAFzVIO5cdJWiR3PO8rkeJeGgDJb6Lw7jzhztU0DsrNODmW3c0Jn7lh4AVO9HswVlGKwAXd9z5Cr4reh1msqEmceO/vUjBhdPv/PIlPe6Y2sDVTNzTCCDMtITl36grVyYAyim3L0JkFKcD9UtcJpQIP4Bw1DU0n1NBNC6Tgrv6abpuqbH4958i55ffN9ZNgbi3i81fpeRx688sSgJfONJslMnKA+iWiVWeRH3JpJFJvoVt2r4bx7XtlHUzl9eFuCt+wqsDQl8CjRDQNOkw/Pw7VUaYRNZunwjINlilwYW6BN79ObCpTyONQHWUqsF9VtbylrGglwUUxQSolDfdyxynkSli/6ORnUZC9Lb5kgXuVN5WoG34zmwz53IbKeZLHyvPkeMnITq54EvEwt2ngchbPUuWiC+bucTeYwFd1IYfEEXT9DiqgznrcT3hR8VBGZQoweRUvWmvltMzqIoknX0XXH8AWlipwclzU8iR1k2AqTA4NoR+44vdW5QWpA92It3ifcEJouiu6C4AnE9CAe86ycZzIuAtUBY7C90I+gVgLZdK8pIXOYX4nwzeBJ4qH34Gwzfs+df2eMLhca2rSKJ1wOnZEiJc3OnTueFKCQeb3LvbK4IyCW+6pM/clSSBTdJsH13dQhjh+VGG5CktFI4TzlBRXnV1iAMxCtX8DEueXpIpF2SZ3DIYTgSFKOkHxpsrQp5wrH1FVhg9TyE5KS0mylxEzHgkxN55MnMhDkYxaXgaJG/LefTfqYGFCyCEKP4XNLCsuuercyXGeTYUCMOLAnePr1lFQMseFNq+iALcn4F4IM+ikr2Aokkq1znJdlh/eBJ7HZYCm+onA59E11BT6SBjd4XzseIdV+ehjceYWMOrLU3ckP/WRLBAE1CfBLTor0p8Vqc5oTusZy/M8g169r05Bl96nRRb8+0hVP1VKKSKVYAQAryX1W+kGZU7dGjLfrKey7E1vWumKHBn6+bGhO30zGqU8Ez7QZ7b0gZ07G76Xp/J/2g58b1uaLprQdLFHmiiV4BG6a5qsR+5F2vHyugkvr/fIiy7B6utP1VX1d8PLBwi8eIWZC9VZ1RHkXFJ1cT1RopOY8yDu2RA07LbLqsKJczT7bN4vtOrXlvqSYDINAzfI2oD+ejXowxagD7sDetEDqN5YoG51BfQ3q0H34FxT0L3HCI8fBfN+YenaQNOwZYshv46xQY3XfTGtqFiwLGJaGrFNjEEOqbzUCV7OC/DrmOEtmOGbmXlqd5h7A9We3h3ec39ShT0fpVxUIB9d0vVgp3l+czDr5GebUUoxjbNLwNfLj9keb4lZKLrzr6KMJymXEw/V6ZQrzqdiHuub6EPiRKl4TFYe37ckrm546W8aXi5T57cdYO6Auv5yh02M58rdmwpz46bMjbvFXG3HsxgHWEtDwspU6/Ng9nWF2aAZr0FnWK3Ezwftj/OMl3ibh368Rk9fNRmivmo1RBUPRX11GKpD8+kdYilfM7Yj1hwQrGvUZLppYAKuCN6qxri2UZHeRxl6rgJ/PsKsA/9lE/BfPi34a9AltJhe2Ruaw0taQfO8CZrn+zJlTc1LaU2hVmP7J8R6Pkz3aiz3rAnWZ/uTDTUrzMiWvfxq3dgZ/N/G4Z0fR0vgv1LQv4QDFcaKHJaDXqLh9wFk617l+j6SQk8FY1TdMbxk8EGDrmhT8DXNq1FwMs+57UCu+dB0+ZE3wbStWq1+AFgd2bWc43ic2pJVozurCEm0nc0u7SQkWY+2t3ka7/HRXtBeha1eLwcVLqzl8NDY2dTGHrgQ2rBHLgwlzVpDv+hbW8bqh0VG0DEZ6ltzHaqbVVUEDEzTYLphMVuDrlLHuuwtD4eS7eIgd3H4JLvXajj0dZNw6Ot2TO8ikt/t0pH6aYSvi9BmGUTebBqBt4oqKdZazSIsBJX5UFSrH4uuVK5tJ8jFysAOu0k9qS9XTbV7zUj19kQqU1E+2VIemz54PUhO8+fm5xVO3Wacug9YbyiZrXRrZFtWmWK1frD902T1fNUs7rAZq8P9saq6LLNh4Ljl87KDJDVfbVGdIHCakeq0k9/SzHzLBXwkp3VLX/1J0Hq28llaM1rH+6PVKhZ8bTnuaLHQQ9uw0OMgqc+X8ryqUO83o95vt6oQ00XqcavJ14L6LePkPhvY5f+Mny3hfir464oljJpZwmh/lkAKrWbNxL3OIuQIavnCsyM9H0+9q5CeNiM93evLFTULf3e/aHLf6yOq46WsGWdZxzh7gpV9+46wqn7mNF2t5Oz5RabaGEoRZy7L6DMj8d2qWGnYlMRh90isDYs+ihUEB+yMr4J8c5IykV6x5GBUs+QgXk9lNJvwZOHFwljmDfWZFRAXeG3DG2lV/+CSrK6/c8matcDJH9A9bRtG+cOO6qzfpkXTy/V384e9T1v/saq/X6n/d81q/91y3bWBzTCzsKGbBiOM6q/7jO66NUPVGqfSmqtmrbnaJRMbn5z5q5+cfbm+HeUnZ1/ubSFRvtTX3k68d/tYbe2KoXcK6C8rQOcLeuYCy4qlQkwtFZpsIqJ2fRB9nPVB23SxRGeSR53U2+cu1gbVrJB4YFUfHI2vHBMfVjywaZ1Qh5Bv+tbGYUE96Q7QeFPI22Tap2ssNNDwN0qaq4PSXHSZSja5X+6pKQ13N4WYK1ScPWcVn7Qd0+3CxFfMca96vehjdQHWpjnurtn9JqHXukPO6ne8Fmctt37H67CYcDvZ5T7L2Y968X9TPMNfL/5aIf5UJXQL8XcutVbirz1v8W/54vYuQ/ifrNq7XVL7ZzVNvunZRLdwf9RXqbtGxTZaf1aarKmuxculWS8Wnuda71zq+WRNy0Bff85az7uk9T8pddG7g3vTV/oPC+pJl4L0J9wIa29CPV/TsV6ojUKo81n1SRGUD1sG5cbzFuoOWfGhr3LZJBgdivwOXTA2rR3pENSH/syigTZfFHskrNBms9gxRC+0OQ+ivUu9lTabq7V5wwZBB6DNwy4Fcwe+1d0mae4Q0k1ffTssqL0uQd2vrIXeEHF0Devm2lx91zuXUqvYFnWuzUahzUYrbbaec9zsdsmMG2pz1wKMTdpsdAfpSiy3u12+96LNHYL6eb2mslaav9wgzXYhzUYhzaaS5lHLKQ37eUtzh6z40Ad/m7TZ7A7UT7j7+R6gHnVpSuN5afP69f5uRZXD9Zq7vN4/3MObF24+0VKpe9Ss7tEe6q4GHiTfr6hU+2mz2k8ft/b8dpqAOYuf3ckL+MBvM3AruHDa+9X3szj7n3N+w32OvICjb2fRVcbR6yN0gWbQ6DeDX/2SYEgRDx13nKlE73mQ8Sj89GfxWxXIORoeuUfeET8aHfnypvGRylfWpdzaDArvlWvSSiBWtb+hOsjfW00B/1FRrPrtVfG+Ru7XRQyROUkmf7cJyX11QURsZtqWbZsWM0ypLOaA6FjDhFBsWoQwsvjyxmZSaImUd59+8EFQxvz4VTAa8YRHHwOeAAMXiQOwv0D8OgsHaBJk6O2nH9JZ5KfjIBxxyUB+RnIn/yED9AcnRVdOFKUZ8maIJ1c8inj0hbxM4TIPoTD0W7CEcPLpz5/+FPhXkueFm4aFGeS3sQF6746dGVhFoixjNplwSJZmwWQCyof+6xoq3Rf//HrZbPI8tAE68+DehCNtKYloyTVP/JALHIAaLpsrb/Mgc1Wa+ASOJRAq3//F9lbY8sF/J6zQxAbFmo0tQzOJ2p90oFOMsVwloBlmvuRxaztkJTv83wQgTYLZBI0+/TvJf5+GR4JSCMpfSDLuifDBfKJP/x7yJAzER29OCrQJ6FRcDu4N00H/jYbwx+FvhE6RC0cP/nz4G29PYIMHgm4ceYH6HTLxM8R56u+r7Bb718gtLB62n/ADOKZ4YFBbs8QPFDM4mGqfoz4ZaGINlKUTTWfAN6ErWS5BN4zjkDv3o6vvl/ubBage+BsL7bb8sbBSU8qsWkC37OK0khUXgri1QW0KXHf6w1XLJkAGpk0wwQbGTLeIqQDqQ3fPLGabtk5Ng4hfttabebpeh5HqRrZHquWc4m6gInSAia5TRogNfkF1lg9kDcuCQYVNiKZhSk27GVDGUryUJbIb3B6kTaP7e3Oql6ekxtdablpZ2TdnlTThZWVyZrdBGDjJXVUoqixYFKIgoMDUMbOtwmANk1BNY2CqNiaG2FqnCQ1miQbRBW3PwKZBfwsGcOvNCJ+IA9umtgVxga1jixbdhgFxq2ViBhcIxAZaMwqsMgUwuHXHAYdufuQkw8Bv4BLW4xPSfrOppyLEhMBMp4RS0HFa/JQpOIWhE4JhIKGBTDUjxC4RUgqAB9uTYe9An1rHAk9EhqlpJhOhFbOZYRWvCxkQZ2mMYGZQAudbRlXJY0ZV7brKhV/n1dRe+ZTU759WaVt5yuMs8is/4D7fr3nFy0Y//mX9rIcj8yzaDamX4CID3cSgTozC+AUCXcN4EHYEr5gq2QI9aq7bhvABbxY4ibuwlUNeuBOG8c1v+SjktxL3becD60g630TSXxuR9NfqjibQm0M/YlvQm2iGvTeK+iTXUrN+g42nIWnevFYsvV7J0t8asfS3DrtSX81P1G/R22VPelfiqLpN8o9/b8TR37vMkRoxmfXbY3eZpPlux6sc6R+NSPpH50g6DBo2bULx4w+NaPihw70OW7c3dac7nVelRRw1JP2zEUn//NlXHtKvrFxL8+O/GtHwr59pqKEB0ItSuCAfwovvPo99Pkycz/8DUEsHCK0GxqUPEQAAwpcAAFBLAQIUABQACAAIACK/uUBFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAIr+5QK0GxqUPEQAAwpcAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACnEQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
+
  
 
== Winkelhalbierende ==
 
== Winkelhalbierende ==
  
 
<ggb_applet width="1024" height="467"  version="4.0" ggbBase64="UEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpbc9s2Fn5OfwWGD/sUS7iDzMrpJLE9zUzSZOrsbmcvDxAJSYwoUiUpW862P2r/SH9TDwBSdzuyZXudemyBBA4BnPN95wLKve/nkwxdmLJKi/w4IB0cIJPHRZLmw+NgVg+OwuD7l9/1hqYYmn6p0aAoJ7o+DriVTJPjIKEmlpKRI605PuK6T45CIu0HxVoOkjjh/QCheZW+yIsf9cRUUx2b83hkJvpdEevaLTyq6+mLbvfy8rLTLtUpymF3OOx35lUSINhmXh0HzcULmG7toUvmxCnGpPvz+3d++qM0r2qdxyZAVoVZ+vK7Z73LNE+KS3SZJvUIFMYc9BiZdDgCpYSSAepaqSlYZGriOr0wFTy7cuuUrifTwInp3I4/81coW+gToCS9SBNTHge4QxiTgoVckuYzQEWZmrxuhEmzaLedrneRmks/r71yS/IA1UWR9bWdEv36K6KYYvTcNsQ3FBop/RD2fZj5hvqG+0Z4Ge4f516UexnuZTgL0EVapf3MHAcDnVVgwzQflIDf4r6qrzLj9tN0LNUnz0GnKv0CwgyDgb3Rrbnxc/sn4Y/bge66kmRl1bqc3XLRdkmCKd9/TXqQpmyxKIu216TiGj3lDYt6xfdSVKzYFpZyv+5va0V2k5qbK/r7wxaU/FFU7HVbX+k17oGqkZVt6FObSWUdhkVIRJb3BAlwDqmA5gKRCBpFEbgDIgJxAbckRNK2CjEFAxwxFCIrRxhy3iFC+ODKTSaRgMlsrwKnRAQW4kgwRJxTcQSuhJxjgpNSBhJCIAEP2eUJtVMwibiEOxYiDnu0PqkICDJ4EO5heYoYQcw+TBSiEkk7H+HW12Votw5TUiQxksROCG4NLu3dGeRDxKw2bWBL8+msbkzUWD2eJK256mK66AZxiEjLwOcj1FpcfNbLdN9kkCvOLZQIXejMuoRbaVDkNWpRpL5vWOrpKI2rc1PX8FSFPusL/U7XZn4G0lW7tpONi7z6WBb1myKbTfIKobjIcLtRuCYr13SpTJGxlQG+OiBWBuTKtdq5bgEjaFYZWL8oq1ZcJ8lbK7GMDWDKD3l29bo0ejwt0nU1el2XdnpmFmdpkur878BWu4q1C1pmIRuw2izEIZI0OynK5PyqAg6j+T9NWRwHR5J0IIuwiKuQkBDTCIC98mOMk04opKI4jISgzOaZKtbW/wTpCEpDRiWWoU0E8NDuIQI7cYubiwVIem6W+g5L690rN2+r10W27HImeKOn9ax0NQQEyNLq9SofZsbRxIVcSNDxuF/Mz5vg6ef6dDWFO+x30B860yOID1SALsOm7fvWyditLaSwk8FOAreES5PFOImok3Bt37dOChjst9aoylo1CW6XSSsX1XCw7juO/zbdz/K0ftfe1Gk8blQl/oEfZ5O+WbBofU5yX3P2uhs0641NmZusYTWAOStmlXfSFcInJk4ncOsHGpNoC9ffYAO+NzHD0rQbz1x95g3mRvEqX7e63VRnZTF5m198Ai5sbKDXbXfZq+IynVrOoT6kgrFZsipJKw2ZJFl9zrohqB7bjAHmqa1pwEFn9agoXQUGcQVa632ZmUC5hWpHL8fQhZlfuULO2hMV/c8Q2hbpz48vAYPhnVRzpNTZdKRtsdconekrU66Zwc33vkg2jQO2dxqAm09dtQjoTo3xxPA7hospTOj8aS1Sgb0rNIct2Gr8qqnfv/jW17FWV+tja6HZ924ABezxZvqKwV7/GQwmOhHU4VAKc0W5IC6KQs3SgdiJhVKS2hIYstZDG/PNn8GYqkOwlJRFlEZwwOFSOGse4Q7koghHcMiiKhQiYvdiz7iYTHSeoNyVkj/pq2BZ2GhsPRppYnnq7Tar2wHtZ2qe30KmhJlau+uDccF3R2WQzk3ie5brLM19JLZpCuZm25T+YinNBRw5eaQUkYzTaDPj1VCPjeHYWbm0XDcJ2F38kCaJccW4rwh+yf0jlU9D6WSapXFaL+ycWY68zWtISsZF5e1cMzZmapP8h/xTqfPKvk1YV/QOQL/ZArq/P9D9Jww02fQf7oAWO9wNkD4KO4LDLSUM4BZC8m8WalcrboD9xoNtMae7nPv3/90MuqtCFrCCtHvPorNZAwnpgNcIoUKlMMZg3qbCvJ4aK7puc4PgbXaQPdmxVZXuD5wu45WA2kb5LCsufzKDzMydZfeF4aNLVRswpGWcmX+9ghPwf7YwOLkZgvXUd7K350Ghl6Q+S9nDViO8w/SE+mOCa+87N96tzFARw4wRSagS3CZAnxipjOBHgVfTiIYhFQ+QGW8N3+lt4Ds9EL7BA8P3ldjKO5wwKTCTCqKpwMrXLLxDwggypQgBIMX5Q1Qs52Zo+zeQOfXx7WQLldHNqFTNbK3dR1/BZf1Nxw5g0gdLd2vWF9bMgICgUjHanF4YuEtIVcSJDKNQeOsfUdHhkoaCKC4h3ck2NH+Dme19mkx3uOW14J/dxiXPDnTJ4Tby9i3u0Dd93xwOvq1fGONESU6gtsGkAT8SAHnIodhhHCvFH/OwcLZl+fH+NeT4QLt//r+dJPAOo7ujxDpC2J8ljghERyaprS4VpSEX4TfkiGY+LWFj1vgNLp/MvAbywcBx8JdfZkX914+zfFyjE6RnA5SYCTqvSz3KUN+PuhnXaVDDFMH6fAeG30c+bVS1LmtXKSB35IBZISVC+gNKwFlCRu2RQ7nvLpWNvjhadc3rX3X0iyIzOl/objZr7hVjPM4J7MNgUJnaKsqi0L/yUTcGreYtNXK2W3MiPXXQNWeH/chG18j27+LClNZ1/vvq5Dd0jFbuT3/bn3H0UMbtqMQeknFp9U5/Mj9vdruviypTpoPF14PuqwEctBEC72Ys62AZYsEgLMGvFG0hx4XEjESYEgxBTFxL2Z1IsR1h4XQzLOj9QWLfGEg7woIkklKBKVVwYCFttQyWVZRzoYTCjN8tLgyeVFxQvhwh4T0EBrpnYODXBIaT2wQC/nQr/0cJBJscbUoZICdWUciUTVySytsFAnEdMmfrIfv07BZIiUOR2lGpf2NIiZAJiqlS9v2mP/5RgAoO3VB52q8KBFd3iybDJxVNPAsppfcQTfie0USucXaM0qpG/0jzsclGOuunpjR5YvZnqzyUrY98vtlmGxWCR4oyFsFpU7DmvEkElnCEUZxGhDF6x+T1+SnSTbF7oJvYptuNlkifoCWIuvmlxKq+bEvf7uq/GLh/5mn+N/XlH1BLBwhAr7SYagkAADgrAABQSwECFAAUAAgACAB7uKhA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAHu4qEBAr7SYagkAADgrAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAAQoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1024" height="467"  version="4.0" ggbBase64="UEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpbc9s2Fn5OfwWGD/sUS7iDzMrpJLE9zUzSZOrsbmcvDxAJSYwoUiUpW862P2r/SH9TDwBSdzuyZXudemyBBA4BnPN95wLKve/nkwxdmLJKi/w4IB0cIJPHRZLmw+NgVg+OwuD7l9/1hqYYmn6p0aAoJ7o+DriVTJPjIKEmlpKRI605PuK6T45CIu0HxVoOkjjh/QCheZW+yIsf9cRUUx2b83hkJvpdEevaLTyq6+mLbvfy8rLTLtUpymF3OOx35lUSINhmXh0HzcULmG7toUvmxCnGpPvz+3d++qM0r2qdxyZAVoVZ+vK7Z73LNE+KS3SZJvUIFMYc9BiZdDgCpYSSAepaqSlYZGriOr0wFTy7cuuUrifTwInp3I4/81coW+gToCS9SBNTHge4QxiTgoVckuYzQEWZmrxuhEmzaLedrneRmks/r71yS/IA1UWR9bWdEv36K6KYYvTcNsQ3FBop/RD2fZj5hvqG+0Z4Ge4f516UexnuZTgL0EVapf3MHAcDnVVgwzQflIDf4r6qrzLj9tN0LNUnz0GnKv0CwgyDgb3Rrbnxc/sn4Y/bge66kmRl1bqc3XLRdkmCKd9/TXqQpmyxKIu216TiGj3lDYt6xfdSVKzYFpZyv+5va0V2k5qbK/r7wxaU/FFU7HVbX+k17oGqkZVt6FObSWUdhkVIRJb3BAlwDqmA5gKRCBpFEbgDIgJxAbckRNK2CjEFAxwxFCIrRxhy3iFC+ODKTSaRgMlsrwKnRAQW4kgwRJxTcQSuhJxjgpNSBhJCIAEP2eUJtVMwibiEOxYiDnu0PqkICDJ4EO5heYoYQcw+TBSiEkk7H+HW12Votw5TUiQxksROCG4NLu3dGeRDxKw2bWBL8+msbkzUWD2eJK256mK66AZxiEjLwOcj1FpcfNbLdN9kkCvOLZQIXejMuoRbaVDkNWpRpL5vWOrpKI2rc1PX8FSFPusL/U7XZn4G0lW7tpONi7z6WBb1myKbTfIKobjIcLtRuCYr13SpTJGxlQG+OiBWBuTKtdq5bgEjaFYZWL8oq1ZcJ8lbK7GMDWDKD3l29bo0ejwt0nU1el2XdnpmFmdpkur878BWu4q1C1pmIRuw2izEIZI0OynK5PyqAg6j+T9NWRwHR5J0IIuwiKuQkBDTCIC98mOMk04opKI4jISgzOaZKtbW/wTpCEpDRiWWoU0E8NDuIQI7cYubiwVIem6W+g5L690rN2+r10W27HImeKOn9ax0NQQEyNLq9SofZsbRxIVcSNDxuF/Mz5vg6ef6dDWFO+x30B860yOID1SALsOm7fvWyditLaSwk8FOAreES5PFOImok3Bt37dOChjst9aoylo1CW6XSSsX1XCw7juO/zbdz/K0ftfe1Gk8blQl/oEfZ5O+WbBofU5yX3P2uhs0641NmZusYTWAOStmlXfSFcInJk4ncOsHGpNoC9ffYAO+NzHD0rQbz1x95g3mRvEqX7e63VRnZTF5m198Ai5sbKDXbXfZq+IynVrOoT6kgrFZsipJKw2ZJFl9zrohqB7bjAHmqa1pwEFn9agoXQUGcQVa632ZmUC5hWpHL8fQhZlfuULO2hMV/c8Q2hbpz48vAYPhnVRzpNTZdKRtsdconekrU66Zwc33vkg2jQO2dxqAm09dtQjoTo3xxPA7hospTOj8aS1Sgb0rNIct2Gr8qqnfv/jW17FWV+tja6HZ924ABezxZvqKwV7/GQwmOhHU4VAKc0W5IC6KQs3SgdiJhVKS2hIYstZDG/PNn8GYqkOwlJRFlEZwwOFSOGse4Q7koghHcMiiKhQiYvdiz7iYTHSeoNyVkj/pq2BZ2GhsPRppYnnq7Tar2wHtZ2qe30KmhJlau+uDccF3R2WQzk3ie5brLM19JLZpCuZm25T+YinNBRw5eaQUkYzTaDPj1VCPjeHYWbm0XDcJ2F38kCaJccW4rwh+yf0jlU9D6WSapXFaL+ycWY68zWtISsZF5e1cMzZmapP8h/xTqfPKvk1YV/QOQL/ZArq/P9D9Jww02fQf7oAWO9wNkD4KO4LDLSUM4BZC8m8WalcrboD9xoNtMae7nPv3/90MuqtCFrCCtHvPorNZAwnpgNcIoUKlMMZg3qbCvJ4aK7puc4PgbXaQPdmxVZXuD5wu45WA2kb5LCsufzKDzMydZfeF4aNLVRswpGWcmX+9ghPwf7YwOLkZgvXUd7K350Ghl6Q+S9nDViO8w/SE+mOCa+87N96tzFARw4wRSagS3CZAnxipjOBHgVfTiIYhFQ+QGW8N3+lt4Ds9EL7BA8P3ldjKO5wwKTCTCqKpwMrXLLxDwggypQgBIMX5Q1Qs52Zo+zeQOfXx7WQLldHNqFTNbK3dR1/BZf1Nxw5g0gdLd2vWF9bMgICgUjHanF4YuEtIVcSJDKNQeOsfUdHhkoaCKC4h3ck2NH+Dme19mkx3uOW14J/dxiXPDnTJ4Tby9i3u0Dd93xwOvq1fGONESU6gtsGkAT8SAHnIodhhHCvFH/OwcLZl+fH+NeT4QLt//r+dJPAOo7ujxDpC2J8ljghERyaprS4VpSEX4TfkiGY+LWFj1vgNLp/MvAbywcBx8JdfZkX914+zfFyjE6RnA5SYCTqvSz3KUN+PuhnXaVDDFMH6fAeG30c+bVS1LmtXKSB35IBZISVC+gNKwFlCRu2RQ7nvLpWNvjhadc3rX3X0iyIzOl/objZr7hVjPM4J7MNgUJnaKsqi0L/yUTcGreYtNXK2W3MiPXXQNWeH/chG18j27+LClNZ1/vvq5Dd0jFbuT3/bn3H0UMbtqMQeknFp9U5/Mj9vdruviypTpoPF14PuqwEctBEC72Ys62AZYsEgLMGvFG0hx4XEjESYEgxBTFxL2Z1IsR1h4XQzLOj9QWLfGEg7woIkklKBKVVwYCFttQyWVZRzoYTCjN8tLgyeVFxQvhwh4T0EBrpnYODXBIaT2wQC/nQr/0cJBJscbUoZICdWUciUTVySytsFAnEdMmfrIfv07BZIiUOR2lGpf2NIiZAJiqlS9v2mP/5RgAoO3VB52q8KBFd3iybDJxVNPAsppfcQTfie0USucXaM0qpG/0jzsclGOuunpjR5YvZnqzyUrY98vtlmGxWCR4oyFsFpU7DmvEkElnCEUZxGhDF6x+T1+SnSTbF7oJvYptuNlkifoCWIuvmlxKq+bEvf7uq/GLh/5mn+N/XlH1BLBwhAr7SYagkAADgrAABQSwECFAAUAAgACAB7uKhA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAHu4qEBAr7SYagkAADgrAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAAQoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Version vom 25. Mai 2012, 22:58 Uhr


Tangentenviereck-Spezialfall

Winkelhalbierende