Benutzer:Oz44oz: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Oz44oz (Diskussion | Beiträge) (→Tangentenviereck-Spezialfall) |
Oz44oz (Diskussion | Beiträge) (→Tangentenviereck-Spezialfall) |
||
Zeile 3: | Zeile 3: | ||
== Tangentenviereck-Spezialfall == | == Tangentenviereck-Spezialfall == | ||
− | <ggb_applet width="1008" height="411" version="4.0" ggbBase64=" | + | <ggb_applet width="1008" height="411" version="4.0" ggbBase64="UEsDBBQACAAIAAcAukAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAHALpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d23LjxrV9dr6ii6lKndQRqb4ADWCOZJc0M/LYZyZ2ZSbJqfOiAoEmCQsEaADUZSr/kpf8QG5OHvI27/6m7O4GKJIAL4BEEZTtsgYk0OjLWnuv3t1oNE++uB2H6FokaRBHpx3Swx0kIi/2g2h42plmg67d+eLzX5wMRTwU/cRFgzgZu9lpx5ApA/+04w0827Btu2sw0+kaPqVdm4l+lxL4TwxY32Z+B6HbNHgRxb9xxyKduJ54743E2H0be26mCh5l2eTF8fHNzU2vKKoXJ8Pj4bDfu00hA6hmlJ528g8vILuFm26YSk4xJsf/9+6tzr4bRGnmRp7oINmEafD5Lz47uQkiP75BN4GfjaDBmBodNBLBcASNMjk06limmgAiE+FlwbVI4d65r6rR2XjSUcncSF7/TH9C4aw9HeQH14EvktMO7hFuO4bJCDU7KE4CEWV5KpKXdlzkc3IdiBudofykyoL6ZXEc9l2ZF/rjHxHFFKMjeSD6QOHAub6E9TnM9IHqg6EPpk5j6NsNndTQaQydxmAddB2kQT8Up52BG6YAXhANEiBu9j3N7kKh6pOfuG83OYI2pcFHSMwwgKnRljjjI/nH4c/AOcpzjSRzpWbJtGahRZFQgr19mfRBLWWzQi1WLpOaK9rJ1xSqG75VQ805bKEo9b/6K5XI1jVzuUT9/WEFcuNJmnhyXPjKSe4eKB3JtLn5ZGKcSodhDjIdafcEmeAc3AIzNxFx4GBRBO6AiIkME74SG3F5tBCz4IKBGLKRTEcYUt5h2vCPYanMODIhM3nWAqdEBAoykMkQUU5lIHAlpBwTnJQySGGayISbZPGEyiwYRwaHb8xGBtRR+qRFICGDG+E7FE8RI4jJm4mFKEdc5kcM6evcllWHLCniGHEiMwS3BpfW7gzpbcRka3gOVxBNptkCRN7YLz5m8WTGBaQGQboXPC1QC3r42Uno9kUIfcR7ySRC124oPUIVNIijDBUk2vrcMHEno8BL34ssg7tS9J177b51M3F7AanTomyV1ouj9Nskzl7G4XQcpQh5cYhndY5DMveZzmoNX9jcBWP+gjl3gc99tirLjeEKmqYCyo+TtEju+v5XMsW9NACS30Th3Xki3KtJHCw24+RYdTcnYuqFgR+40e/BWGUpEhd03/tIvSp6H2azoiZx4r+/S8GE0e3/iyQ+7VhGzzEskxuEEWbZUnLu9BVqkh5lFDs2N5kNKcD9Us8NlQL34By1uGESyk3LBim4q75mOpYuW1zPOHJvxX1zh0kwsxb5+av0PA792WUFwEt3kk0TFTlA/RLZqrNoGAplJEpvoVv2rvrx7XttHUzn9eFuAt+wrkB/qIBHiWwadJjD/NjXR5VG1myWCqs0WKXAhbkF/uw6cahKoY59fVSpwH511fKWsqKVBBfFBKmSNNzJHaeQK2n9spOfRkH2tviSBd5V3lSib/jNdNwXMxtazJM8Vp4nx0tGdnIlkkiEuU0Dl9N4mmoXnTN3X3jBGL7qCzkkrqTrd1ABfdYXw0QUFQ9VVKYBU1fxvLWWTqusLpJ4/FV0/QFsYakCJ8dFLU9SLwkm0uRQH/qBK3FvVX6QutCN+PP3SSeEpnuyuwB4MgkNuOc0G8WJirtAVeAofS8UY4i1UKbMS1noDOZ3KnyTeKK4/x0I26zv09fvCYPLlaamjNINJyNXhnh5o0P3TiQLMKj83sX+IjiD4Fb4+sx9SQrIFN3mwfUdlCGPH3VYrsNS2QjpPAuKq88uMQBmodu/AYnzS1LGYtEmdwyGG4EhKjpB8Sba0CdCaB/RVYYPE8hOScuCZC8jxh8JMS8ej93IR5GKWl4GiReKzn036mJpQsglGj+NzTQrLnn63Mlxnk2JAjDiwJvh61VRsGCOc21eRQFuTsC9EGbQSV/BUCRVap3luqw+vAl8X6gATfcTwVBE11BT6CNhdIfzseMd1uWjj8WZW8Coq07dkfzURzJHEFCfBLforEh/VqQ6ozmtZyzP8wx69a4+BV16lxZZiO8jXf1UK6WMVIIBALyW1G+VGyxy6lWQ+WY9lYve9KaRrqiR4TA/1nSnbwaDVGTSB7rMUT6wc2fD9/K0+J+xA9/blqaLOjRd7JEmShV4hO6aJvuRe5FmvLyuw8vrPfJiKrC65lN1Vd3d8PIBAi9RYuZCd1ZVBLmXVF9cT5TsJGY8yHs2BA277bLKcOIczS6b9QuN+rWlviQYT8LAC7ImoL9eDXq/Aej99oBe9AC6N5ao220B/c1q0H04Vxd0/zHC40fBvFtYutEzDGw7cshvYswpf92V04qaBdsmlm0Qx8IY5JCqS63g5bwAv4oZ0YAZsZmZp3aHmTdQ4+nd4b0Yjsuw56OUixLkg0u6Huw0z28GZpX8bDNKKaZxdgn4evmxmuOtMAtld/5VlIkkFWrioTydciXERM5jfRN9SNwolY/JFsf3DYmrGl4ONw0vl6kbNh1g7oC67nKHTfhz5e5NiblRXeZG7WKusuOZjwPspSFhaar1eTD7usRsUI/XoDWsluLng/bHWcZLvM1CP1Ghp6/qDFFfNRqiyoeiQ33o60P96R1ia1/j2xFr9Qg2DWox0+KYgCuCt+oxrsNL0vsoQ89V4M9GmFXgv6wD/sunBX8NuoQW0yt7Q7N/SUtontdB83xfpmzoeSmjLtR6bP+EWM+G6X6F5Z7Vwfpsf7KhZ4UZ2bKXX60bO4P/2zi8G8bREvivNPQv4UClsSKX5aAv0PD7ALL1rnJ9Hyihp5Ixqu/oXzL4YEBXtCn4muTVKDiZ5dx0IFd/aLr8yJtg2lStVj8ALI/sGs5xPE5tyarRnV2EJMbOZpd2EpKsR9vfPI33+GjPaa/G1qyWgxIX9nJ4yHc2tbEHLqQ27JELrqXZqOkXXXvLWP2wyAhaJkNde6ZDVbOqmoCeZXFmcps5BnSVJjZVb3k4lGwXB3nzwyfVvZbDoa/rhENfN2N6F5H8bpeOVE8jfF2ENssginrTCKJRVEmx0WgWYS6ozIeiRvVYdKVybTtBLlcGtthNqkl9uWqq3a9Hqr8nUpmO8smW8lj3wetBcpo/Nz8vcerV49R7wHpDxWypWyPbsso0q9WD7Z8mq+erZnH79Vjt749V3WVZNQPHLZ+XHSSp+WqL8gSBW49Ut5n8LszMN1zAR3Jat/TVnwStZyufpdWjdbQ/Wu1iwdeW444GCz2MDQs9DpL6fCnPqxL1w3rUD5utKsR0nnrcaPK1oH7LOLnLes7if/xnS7ifCv66ZAmDepYw2J8lkEKrWT1xr7IINYJavvDsSM/HU+9KpKf1SE/3+nJFxcLf3S+a3Pf6iPJ4KavHWdYyzp5gZd++I6yyn7l1Vyu5e36RqTKG0sRZyzL6zEh8typW6tclsd8+EivDoo9yBcEBO+OrIN+cZJFIv1hyMKhYchCvpzKajkUy92JhrPKG+kwLiAu8tuGNNKp/cElW19+9ZPVa4OYP6J62DYP8YUd51m/Tounl+nv5w96nrf9I139Yqv939Wr/3XLdjZ7DMLMxNy3OCKPm6y6ju25NX7fGLbXmql5rrnbJxMYnZ8PVT86+XN+OxSdnX+5tIVG+1NfZTrx3+1ht7YqhdxroL0tA5wt6ZgLLiqVCTC8VGm8ionJ9EH2c9UHbdLHEZIpHk1Tb5y7WBlWskHhgVR8cja8cEx9WPLBpnVCLkK/71sZhQT1uD9B4U8hbZ9qnbSzU0PA3WprLg9JcdJlONr5f7mloDfc2hZgrVJw9ZxUfNx3T7cLEV8xxr3q96GN5AdamOe622f0moTfaQ87qd7zmZy23fsfrsJjwWtnlPsvZj2rxf1M8w18v/kYh/lQn9Arxdy+NRuJvPG/xb/ji9i5D+J+s2nttUvtnNU2+6dlEu3B/1Fep20bFNlp/tjBZU16Ll0uzWSw8z7XevTTzyZqGgb75nLVetEnrf1LqYrYH97qv9B8W1OM2BelPuBHW3oR6tqZjvVDzQqjzWfVxEZT3Gwbl/HkLdYus+NBXuWwSjBZFfocuGJvWjrQI6kN/ZlFDmy+KPRJWaLNV7BhiFtqcB9H+pdlIm63V2rxhg6AD0OZ+m4K5A9/qbpM0twjpuq++HRbUfpug7pbWQm+IONqGdX1tLr/rnUupXWyLOtNmXmgzb6TN9nOOm702mXFNbW5bgLFJm3l7kC7Fcrvb5Xsv2twiqJ/XayprpfnLDdLsFNLMC2m2tDQPGk5pOM9bmltkxYc++NukzVZ7oH7C3c/3APWgTVMaz0ub16/390qqHK7X3OX1/uEe3rzw8omWUt2jenWP9lB3PfAg+X5FC7Wf1Kv95HFrL24nCZiz/NmdvIAP4jYDt4ILp51ffT+Ns/85FzdiKJAfCPTtNLrKBHp9hC7QFBr9pverXxIMKeK+640ynei9CDIRhZ/+LH+rArlH/SPvyD8SR4OjobppdKTzVXVZbG0GhXcWa9JIIFa1v6Y6qN9bTQH/QVGs/u1V+b5G7tdFDJG5SaZ+twmpfXVJzyTctLnFmIOJYRClLVaPEpMbFsbYtrFl2vOvb2ymhS7Q8u7TD0OQlJE4fhUMBiIR0cdAJMDBReIC8C+QuM7CHhoHGXr76Yd0Gg3TURAOhOIgP6PYU/+QHvqDm6IrN4rSDPlTJJIrEUUi+kJdpnBZhFAY+i3YQjj+9OdPfwqGV4rpuZv6hSHkt7Eeeu+N3CnYRaJtYzoeC0iWZsF4DNqH/usaKt2V//x62XDyPIweOvPh3kQgYymJbMm1SIahkDgAOUI1V93mQ+a6NPkJXEsitHj/F9vbYcNH/y2wQ0YI5ozZxDAdZuvtoc0ex6ZhONTg3GC2Y9azQ7Zgh/+bAKRJMB2jwad/J/kv1IhIUgph+QtFxj0RQzCf6NO/+yIJA/nRn5ECbQI6NZe9e8N00X+jPvwJ+BugU+TB0Ye/IfyNtiewxiNBL478QP8Smfwh4jz192V2ix1s1CYWD9tR+CEcWz3TMU2TOBxbxHSopeMY0iOOyTEFprHNbctZSfICcv04DoV7P7z6frnDuX8L7oG/sdBsyx8L43yL8zXb7G62YWPBhgs53NqcNgWuO/3hqmUDkMvZuGWAERim5dhUb3XVxXK3ccsyMaEWIY7FLF7Pz80qjHQnsj1SDecUdwSV+kFv0wLTs+FgMZIPZDmlDrYxI8zAHGOrHlB8KV7KEtUJbg/SptH9vTlVi1NS4WsNN60s7ZuzSpjwsi6509sgDNzkrjSQWWaB9rBNKbYMk4F5MscuDJZbhBrQI1kyauJya506NFgLNMgOaHsGNg36GzCAG29G+EQcOA51bJuDcGCbFp0Gd5hlW5jBBWI53KhHgb1IAQxuvVEgoJMfuEk/GNZwCfvxCWm+2dRTEWJRjE1KKGVmwQiVTsFNiOJsxg3bJvUIcRYIWQh/e9uT4exAnxrHAk9EhmUYFqOOYTOHcbt4XYgz2zQYwYxTAudps6AqecSgqllPOffjvCwPqMia3+ddPeNxFg1Lv98+2655xbtGP/5l/aSHq/Is2g2pl9CC0bWFQZwY5RYQ5HD+IOwIXjFTsgV6RbRdvQvhA14scBNvbieHvHA3DOOb34pBKG4V7ttOB1aRdL6JpL/WIumv5Q1NoDOHbsSBsMo2uLM3irokl1Kren+NpyFp1rxGLL1eydLfarH0txa7UlcH49U79LbZk94tcFTeJfnHv9fi6O9t5kiPLa3q3bHbTNJss+NVjvSPWiT9o3UkHQYNm/ag+PGHWjT80OJeh63bmrrVnc6rhTUcFST9sxZJ//zZVx7Sr6xcSvPjv2rR8K+faaigAdCLUrignsHL70MRD0U/cT//D1BLBwjo6QgPEBEAAMGXAABQSwECFAAUAAgACAAHALpARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAcAukDo6QgPEBEAAMGXAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAqBEAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
== Winkelhalbierende == | == Winkelhalbierende == | ||
<ggb_applet width="1024" height="467" version="4.0" ggbBase64="UEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpbc9s2Fn5OfwWGD/sUS7iDzMrpJLE9zUzSZOrsbmcvDxAJSYwoUiUpW862P2r/SH9TDwBSdzuyZXudemyBBA4BnPN95wLKve/nkwxdmLJKi/w4IB0cIJPHRZLmw+NgVg+OwuD7l9/1hqYYmn6p0aAoJ7o+DriVTJPjIKEmlpKRI605PuK6T45CIu0HxVoOkjjh/QCheZW+yIsf9cRUUx2b83hkJvpdEevaLTyq6+mLbvfy8rLTLtUpymF3OOx35lUSINhmXh0HzcULmG7toUvmxCnGpPvz+3d++qM0r2qdxyZAVoVZ+vK7Z73LNE+KS3SZJvUIFMYc9BiZdDgCpYSSAepaqSlYZGriOr0wFTy7cuuUrifTwInp3I4/81coW+gToCS9SBNTHge4QxiTgoVckuYzQEWZmrxuhEmzaLedrneRmks/r71yS/IA1UWR9bWdEv36K6KYYvTcNsQ3FBop/RD2fZj5hvqG+0Z4Ge4f516UexnuZTgL0EVapf3MHAcDnVVgwzQflIDf4r6qrzLj9tN0LNUnz0GnKv0CwgyDgb3Rrbnxc/sn4Y/bge66kmRl1bqc3XLRdkmCKd9/TXqQpmyxKIu216TiGj3lDYt6xfdSVKzYFpZyv+5va0V2k5qbK/r7wxaU/FFU7HVbX+k17oGqkZVt6FObSWUdhkVIRJb3BAlwDqmA5gKRCBpFEbgDIgJxAbckRNK2CjEFAxwxFCIrRxhy3iFC+ODKTSaRgMlsrwKnRAQW4kgwRJxTcQSuhJxjgpNSBhJCIAEP2eUJtVMwibiEOxYiDnu0PqkICDJ4EO5heYoYQcw+TBSiEkk7H+HW12Votw5TUiQxksROCG4NLu3dGeRDxKw2bWBL8+msbkzUWD2eJK256mK66AZxiEjLwOcj1FpcfNbLdN9kkCvOLZQIXejMuoRbaVDkNWpRpL5vWOrpKI2rc1PX8FSFPusL/U7XZn4G0lW7tpONi7z6WBb1myKbTfIKobjIcLtRuCYr13SpTJGxlQG+OiBWBuTKtdq5bgEjaFYZWL8oq1ZcJ8lbK7GMDWDKD3l29bo0ejwt0nU1el2XdnpmFmdpkur878BWu4q1C1pmIRuw2izEIZI0OynK5PyqAg6j+T9NWRwHR5J0IIuwiKuQkBDTCIC98mOMk04opKI4jISgzOaZKtbW/wTpCEpDRiWWoU0E8NDuIQI7cYubiwVIem6W+g5L690rN2+r10W27HImeKOn9ax0NQQEyNLq9SofZsbRxIVcSNDxuF/Mz5vg6ef6dDWFO+x30B860yOID1SALsOm7fvWyditLaSwk8FOAreES5PFOImok3Bt37dOChjst9aoylo1CW6XSSsX1XCw7juO/zbdz/K0ftfe1Gk8blQl/oEfZ5O+WbBofU5yX3P2uhs0641NmZusYTWAOStmlXfSFcInJk4ncOsHGpNoC9ffYAO+NzHD0rQbz1x95g3mRvEqX7e63VRnZTF5m198Ai5sbKDXbXfZq+IynVrOoT6kgrFZsipJKw2ZJFl9zrohqB7bjAHmqa1pwEFn9agoXQUGcQVa632ZmUC5hWpHL8fQhZlfuULO2hMV/c8Q2hbpz48vAYPhnVRzpNTZdKRtsdconekrU66Zwc33vkg2jQO2dxqAm09dtQjoTo3xxPA7hospTOj8aS1Sgb0rNIct2Gr8qqnfv/jW17FWV+tja6HZ924ABezxZvqKwV7/GQwmOhHU4VAKc0W5IC6KQs3SgdiJhVKS2hIYstZDG/PNn8GYqkOwlJRFlEZwwOFSOGse4Q7koghHcMiiKhQiYvdiz7iYTHSeoNyVkj/pq2BZ2GhsPRppYnnq7Tar2wHtZ2qe30KmhJlau+uDccF3R2WQzk3ie5brLM19JLZpCuZm25T+YinNBRw5eaQUkYzTaDPj1VCPjeHYWbm0XDcJ2F38kCaJccW4rwh+yf0jlU9D6WSapXFaL+ycWY68zWtISsZF5e1cMzZmapP8h/xTqfPKvk1YV/QOQL/ZArq/P9D9Jww02fQf7oAWO9wNkD4KO4LDLSUM4BZC8m8WalcrboD9xoNtMae7nPv3/90MuqtCFrCCtHvPorNZAwnpgNcIoUKlMMZg3qbCvJ4aK7puc4PgbXaQPdmxVZXuD5wu45WA2kb5LCsufzKDzMydZfeF4aNLVRswpGWcmX+9ghPwf7YwOLkZgvXUd7K350Ghl6Q+S9nDViO8w/SE+mOCa+87N96tzFARw4wRSagS3CZAnxipjOBHgVfTiIYhFQ+QGW8N3+lt4Ds9EL7BA8P3ldjKO5wwKTCTCqKpwMrXLLxDwggypQgBIMX5Q1Qs52Zo+zeQOfXx7WQLldHNqFTNbK3dR1/BZf1Nxw5g0gdLd2vWF9bMgICgUjHanF4YuEtIVcSJDKNQeOsfUdHhkoaCKC4h3ck2NH+Dme19mkx3uOW14J/dxiXPDnTJ4Tby9i3u0Dd93xwOvq1fGONESU6gtsGkAT8SAHnIodhhHCvFH/OwcLZl+fH+NeT4QLt//r+dJPAOo7ujxDpC2J8ljghERyaprS4VpSEX4TfkiGY+LWFj1vgNLp/MvAbywcBx8JdfZkX914+zfFyjE6RnA5SYCTqvSz3KUN+PuhnXaVDDFMH6fAeG30c+bVS1LmtXKSB35IBZISVC+gNKwFlCRu2RQ7nvLpWNvjhadc3rX3X0iyIzOl/objZr7hVjPM4J7MNgUJnaKsqi0L/yUTcGreYtNXK2W3MiPXXQNWeH/chG18j27+LClNZ1/vvq5Dd0jFbuT3/bn3H0UMbtqMQeknFp9U5/Mj9vdruviypTpoPF14PuqwEctBEC72Ys62AZYsEgLMGvFG0hx4XEjESYEgxBTFxL2Z1IsR1h4XQzLOj9QWLfGEg7woIkklKBKVVwYCFttQyWVZRzoYTCjN8tLgyeVFxQvhwh4T0EBrpnYODXBIaT2wQC/nQr/0cJBJscbUoZICdWUciUTVySytsFAnEdMmfrIfv07BZIiUOR2lGpf2NIiZAJiqlS9v2mP/5RgAoO3VB52q8KBFd3iybDJxVNPAsppfcQTfie0USucXaM0qpG/0jzsclGOuunpjR5YvZnqzyUrY98vtlmGxWCR4oyFsFpU7DmvEkElnCEUZxGhDF6x+T1+SnSTbF7oJvYptuNlkifoCWIuvmlxKq+bEvf7uq/GLh/5mn+N/XlH1BLBwhAr7SYagkAADgrAABQSwECFAAUAAgACAB7uKhA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAHu4qEBAr7SYagkAADgrAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAAQoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <ggb_applet width="1024" height="467" version="4.0" ggbBase64="UEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHu4qEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpbc9s2Fn5OfwWGD/sUS7iDzMrpJLE9zUzSZOrsbmcvDxAJSYwoUiUpW862P2r/SH9TDwBSdzuyZXudemyBBA4BnPN95wLKve/nkwxdmLJKi/w4IB0cIJPHRZLmw+NgVg+OwuD7l9/1hqYYmn6p0aAoJ7o+DriVTJPjIKEmlpKRI605PuK6T45CIu0HxVoOkjjh/QCheZW+yIsf9cRUUx2b83hkJvpdEevaLTyq6+mLbvfy8rLTLtUpymF3OOx35lUSINhmXh0HzcULmG7toUvmxCnGpPvz+3d++qM0r2qdxyZAVoVZ+vK7Z73LNE+KS3SZJvUIFMYc9BiZdDgCpYSSAepaqSlYZGriOr0wFTy7cuuUrifTwInp3I4/81coW+gToCS9SBNTHge4QxiTgoVckuYzQEWZmrxuhEmzaLedrneRmks/r71yS/IA1UWR9bWdEv36K6KYYvTcNsQ3FBop/RD2fZj5hvqG+0Z4Ge4f516UexnuZTgL0EVapf3MHAcDnVVgwzQflIDf4r6qrzLj9tN0LNUnz0GnKv0CwgyDgb3Rrbnxc/sn4Y/bge66kmRl1bqc3XLRdkmCKd9/TXqQpmyxKIu216TiGj3lDYt6xfdSVKzYFpZyv+5va0V2k5qbK/r7wxaU/FFU7HVbX+k17oGqkZVt6FObSWUdhkVIRJb3BAlwDqmA5gKRCBpFEbgDIgJxAbckRNK2CjEFAxwxFCIrRxhy3iFC+ODKTSaRgMlsrwKnRAQW4kgwRJxTcQSuhJxjgpNSBhJCIAEP2eUJtVMwibiEOxYiDnu0PqkICDJ4EO5heYoYQcw+TBSiEkk7H+HW12Votw5TUiQxksROCG4NLu3dGeRDxKw2bWBL8+msbkzUWD2eJK256mK66AZxiEjLwOcj1FpcfNbLdN9kkCvOLZQIXejMuoRbaVDkNWpRpL5vWOrpKI2rc1PX8FSFPusL/U7XZn4G0lW7tpONi7z6WBb1myKbTfIKobjIcLtRuCYr13SpTJGxlQG+OiBWBuTKtdq5bgEjaFYZWL8oq1ZcJ8lbK7GMDWDKD3l29bo0ejwt0nU1el2XdnpmFmdpkur878BWu4q1C1pmIRuw2izEIZI0OynK5PyqAg6j+T9NWRwHR5J0IIuwiKuQkBDTCIC98mOMk04opKI4jISgzOaZKtbW/wTpCEpDRiWWoU0E8NDuIQI7cYubiwVIem6W+g5L690rN2+r10W27HImeKOn9ax0NQQEyNLq9SofZsbRxIVcSNDxuF/Mz5vg6ef6dDWFO+x30B860yOID1SALsOm7fvWyditLaSwk8FOAreES5PFOImok3Bt37dOChjst9aoylo1CW6XSSsX1XCw7juO/zbdz/K0ftfe1Gk8blQl/oEfZ5O+WbBofU5yX3P2uhs0641NmZusYTWAOStmlXfSFcInJk4ncOsHGpNoC9ffYAO+NzHD0rQbz1x95g3mRvEqX7e63VRnZTF5m198Ai5sbKDXbXfZq+IynVrOoT6kgrFZsipJKw2ZJFl9zrohqB7bjAHmqa1pwEFn9agoXQUGcQVa632ZmUC5hWpHL8fQhZlfuULO2hMV/c8Q2hbpz48vAYPhnVRzpNTZdKRtsdconekrU66Zwc33vkg2jQO2dxqAm09dtQjoTo3xxPA7hospTOj8aS1Sgb0rNIct2Gr8qqnfv/jW17FWV+tja6HZ924ABezxZvqKwV7/GQwmOhHU4VAKc0W5IC6KQs3SgdiJhVKS2hIYstZDG/PNn8GYqkOwlJRFlEZwwOFSOGse4Q7koghHcMiiKhQiYvdiz7iYTHSeoNyVkj/pq2BZ2GhsPRppYnnq7Tar2wHtZ2qe30KmhJlau+uDccF3R2WQzk3ie5brLM19JLZpCuZm25T+YinNBRw5eaQUkYzTaDPj1VCPjeHYWbm0XDcJ2F38kCaJccW4rwh+yf0jlU9D6WSapXFaL+ycWY68zWtISsZF5e1cMzZmapP8h/xTqfPKvk1YV/QOQL/ZArq/P9D9Jww02fQf7oAWO9wNkD4KO4LDLSUM4BZC8m8WalcrboD9xoNtMae7nPv3/90MuqtCFrCCtHvPorNZAwnpgNcIoUKlMMZg3qbCvJ4aK7puc4PgbXaQPdmxVZXuD5wu45WA2kb5LCsufzKDzMydZfeF4aNLVRswpGWcmX+9ghPwf7YwOLkZgvXUd7K350Ghl6Q+S9nDViO8w/SE+mOCa+87N96tzFARw4wRSagS3CZAnxipjOBHgVfTiIYhFQ+QGW8N3+lt4Ds9EL7BA8P3ldjKO5wwKTCTCqKpwMrXLLxDwggypQgBIMX5Q1Qs52Zo+zeQOfXx7WQLldHNqFTNbK3dR1/BZf1Nxw5g0gdLd2vWF9bMgICgUjHanF4YuEtIVcSJDKNQeOsfUdHhkoaCKC4h3ck2NH+Dme19mkx3uOW14J/dxiXPDnTJ4Tby9i3u0Dd93xwOvq1fGONESU6gtsGkAT8SAHnIodhhHCvFH/OwcLZl+fH+NeT4QLt//r+dJPAOo7ujxDpC2J8ljghERyaprS4VpSEX4TfkiGY+LWFj1vgNLp/MvAbywcBx8JdfZkX914+zfFyjE6RnA5SYCTqvSz3KUN+PuhnXaVDDFMH6fAeG30c+bVS1LmtXKSB35IBZISVC+gNKwFlCRu2RQ7nvLpWNvjhadc3rX3X0iyIzOl/objZr7hVjPM4J7MNgUJnaKsqi0L/yUTcGreYtNXK2W3MiPXXQNWeH/chG18j27+LClNZ1/vvq5Dd0jFbuT3/bn3H0UMbtqMQeknFp9U5/Mj9vdruviypTpoPF14PuqwEctBEC72Ys62AZYsEgLMGvFG0hx4XEjESYEgxBTFxL2Z1IsR1h4XQzLOj9QWLfGEg7woIkklKBKVVwYCFttQyWVZRzoYTCjN8tLgyeVFxQvhwh4T0EBrpnYODXBIaT2wQC/nQr/0cJBJscbUoZICdWUciUTVySytsFAnEdMmfrIfv07BZIiUOR2lGpf2NIiZAJiqlS9v2mP/5RgAoO3VB52q8KBFd3iybDJxVNPAsppfcQTfie0USucXaM0qpG/0jzsclGOuunpjR5YvZnqzyUrY98vtlmGxWCR4oyFsFpU7DmvEkElnCEUZxGhDF6x+T1+SnSTbF7oJvYptuNlkifoCWIuvmlxKq+bEvf7uq/GLh/5mn+N/XlH1BLBwhAr7SYagkAADgrAABQSwECFAAUAAgACAB7uKhA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAHu4qEBAr7SYagkAADgrAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAAQoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Version vom 25. Mai 2012, 23:00 Uhr
Tangentenviereck-Spezialfall
Winkelhalbierende