Verkettung zweier Geradenspiegelungen SoSe 12: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „== Verkettung von Abbildungen == ===== Definition IX.1 : (Verkettung von Abbildungen) ===== :Unter einer Verkettung von Abbildungen versteht man das Hintereinande…“)
 
Zeile 6: Zeile 6:
 
=== Verkettung zweier Geradenspiegelungen===
 
=== Verkettung zweier Geradenspiegelungen===
 
Gegeben seien zwei Geraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>.<br />
 
Gegeben seien zwei Geraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>.<br />
'''Aufgabe:''' Welche prinzipiellen Möglichkeiten bezüglich der Lage der beiden Geraden a und b gibt es? Ihre Antwort: <br /><br />
+
'''Aufgabe:''' Welche prinzipiellen Möglichkeiten bezüglich der Lage der beiden Geraden ''a'' und ''b'' gibt es? Ihre Antwort: <br /><br />
 
Wir betrachten zunächst zwei sich schneidende Spiegelgeraden: Experimentieren Sie mit dem nachfolgenden Applet, indem Sie die Verkettung der beiden Geradenspiegelungen ausführen, d. h. auf das Dreieck anwenden. Welche Zusammenhänge entdecken Sie?<br /><br />
 
Wir betrachten zunächst zwei sich schneidende Spiegelgeraden: Experimentieren Sie mit dem nachfolgenden Applet, indem Sie die Verkettung der beiden Geradenspiegelungen ausführen, d. h. auf das Dreieck anwenden. Welche Zusammenhänge entdecken Sie?<br /><br />
 
<ggb_applet width="649" height="465"  version="4.0" ggbBase64="UEsDBBQACAAIAI+D0kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAI+D0kAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vltb9s2EP7c/gpCnxuZpKgXF06Ltlu3AOkLkG4Y9mWgJdpmI4uaSDt20R+/IynJUtKXBE26pkETvh15vOeeO57d2dPdukRb0WipquOAhDhAospVIavlcbAxi6MsePrk4Wwp1FLMG44WqllzcxwwKymL42DBKRXpAh8VCY2PmEjTo2mWF0eLnCyyYo4zHPMAoZ2Wjyv1mq+FrnkuzvKVWPNTlXPjFK+MqR9PJhcXF2GnKlTNcrJczsOdLgIE16z0cdB2HsNxo00XkROnGJPJX69O/fFHstKGV7kIkDVhI588fDC7kFWhLtCFLMzqOEjiNEArIZcrsCnBYNPECtUASC1yI7dCw9bB0Nls1nXgxHhl1x/4Hip7cwJUyK0sRHMc4DDCjBGGsW8DpBopKtNKklbjpDtrtpXiwh9qe04fbDJKlXNuz0MfPyKKKUaPbEN8Q6FJEr+E/RyOfEN9w3wTexnmtzMvyrwM8zIsCtBWajkvhXVvqQE/WS0a8F0/1mZfCnefduJgO3kENmn5AYQjC6gHHOYxfmR/AeVHrEN6YCQZaDXN5oZKO5UJm15fJf0mQ6NOJ/2UmTT+jJnJF5R6u69jJ4kHOkGV++d+r2iMvmTmZY1+/G0KE/ZdTJxNulCZtdGB9MrKtuwxYq1tvERTFE8t7QmKITaSFFgeIzKFJqUIogGRGLEYhiRDiW1TFKWwwFCEMmTlSIRccMQZ/GGpOyxBMRxmZ1OISURAEUNxhIiLKYYgkpCLS4hRGoFEHKMYNln1hNojogSxBEZRhhjc0YZkSkAwgo0wBvUURQRFdjNJEU1QYs8jzIZ6ktmrw5EUJRglxB4IUQ0R7aMZ5DMUWWuSFi5Z1RszgihfF13XqLr3BUhDPjrkPJ+fRinxwazkc1HCK3FmPYnQlpc2IpyihaoM6pxI/dyy4fVK5vpMGAO7NHrPt/yUG7F7CdK60+1kc1Xpt40yL1S5WVcaoVyVuL+zKsmgT/tbwyAaLLDhQjxYSAb99JN6FaygjRagXzW6E+dFcWIlDqkBkHxTlfvnjeDntZJjM2YT9+DMxCYvZSF59SeQ1WqxuKD+/bHpqnt/WJR2F1FNcbbXwGC0+1s0ygbDNJwOf+Dd2vuliCb2MdY5t/HGLsll4P59uxZjEHQaxLZ3BN+Jg03LRvaUsP0T/VyVRb/srHzBa7NpXIEAKbCxd39WLUvhmOCSKry++flc7c48BSJ/1rt9DaP2AvOlQxdBBqBxDAJtO/etk7E366Wwk8FOAneckkW/TqbUSbh27lsnBST1V2stJZ2VBHdqpHZ5CwdtdHQ5yVLcPuabSprTbmBkft6aSvyG15v1XPREGZ9JbuvM2eQSk2bnoqlE2RIXfLlRG+3jcMDpQuRyDUO/0ELCrbv+gAv42UIsG9FdvHTFlwfMreIhJ69Mu6NeNmp9Um3fARcuXWA26W4503kja0s5NIdkfy4OrCqk5vBWFMN9NtLA9Ny+CQCPsdBADG7MSjWuvoLUAa0NsFKsoZ5CxtHLMbSH+cyVaRZPpObvIXv1D5xfPzgMlj9JNUdKXtYrbku51uiS70UzgsGd90oVY3AWcicKP3PQ5IDUaAdnhxm8lHvbYRClH3z97QtQa4YNn1Fi9bOXfADE8Ah8BYvnV7EYc/KOweAVENG5E/Ja7YleC+FjxF8YOjUc51LLKC93iJEwc4CxkNI7B+zFTwAYUIw6xKIwuXuKPft/w+02ADvCDqi9VU+zO0fsl/uPGAmJD0oSsrsH7Nf7DxgOpx4w4NrtZLFcrde8KlDlPmG9VeV+qargUPNzbGMTcWIJhzi1MHqMNqZbh6KihKqNeDHhxfg/dgxldeFVtoo+4SOvsvNCf9i4ADPwCeC8Elq7KtG09aDr/C6LQrhPf5MvO3gA6dDDJI6cj2PSVogHF5ObuPjzPNRiaUf9RcRXmHjzi96Qi4OkRULahmAWjar/qeMXrEc4vVIPX98d4t/Kb9G+SJXrupS5ND2LSsv3k8pAySpczXa1Ej0XorYfAd5U7xpeaftF4rg0uj70lpY/DPgkTPpwJmPwp0kHf5Il7KeBv/hxwAfMWYZHP76ktpiz0TxxvgAfMTpaiO6tX8Yv48v7/zIyV3KB9+LbKiXGL+Mp+PjSs3jm37uXV95D/uUXz9LlkI++GfrbCYYoxHTE+bgrzMahwBy2cYgjdkdZ6bqk/e3+kxbq36T9UJp+X9L+doW08xuQdv6DkJaG0Zi0UZ/AWzhxmFLA+M6JOhl+6eS+wW3/K/LJf1BLBwgc1dxupgYAACcdAABQSwECFAAUAAgACACPg9JA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAI+D0kAc1dxupgYAACcdAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAPQcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
 
<ggb_applet width="649" height="465"  version="4.0" ggbBase64="UEsDBBQACAAIAI+D0kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAI+D0kAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vltb9s2EP7c/gpCnxuZpKgXF06Ltlu3AOkLkG4Y9mWgJdpmI4uaSDt20R+/IynJUtKXBE26pkETvh15vOeeO57d2dPdukRb0WipquOAhDhAospVIavlcbAxi6MsePrk4Wwp1FLMG44WqllzcxwwKymL42DBKRXpAh8VCY2PmEjTo2mWF0eLnCyyYo4zHPMAoZ2Wjyv1mq+FrnkuzvKVWPNTlXPjFK+MqR9PJhcXF2GnKlTNcrJczsOdLgIE16z0cdB2HsNxo00XkROnGJPJX69O/fFHstKGV7kIkDVhI588fDC7kFWhLtCFLMzqOEjiNEArIZcrsCnBYNPECtUASC1yI7dCw9bB0Nls1nXgxHhl1x/4Hip7cwJUyK0sRHMc4DDCjBGGsW8DpBopKtNKklbjpDtrtpXiwh9qe04fbDJKlXNuz0MfPyKKKUaPbEN8Q6FJEr+E/RyOfEN9w3wTexnmtzMvyrwM8zIsCtBWajkvhXVvqQE/WS0a8F0/1mZfCnefduJgO3kENmn5AYQjC6gHHOYxfmR/AeVHrEN6YCQZaDXN5oZKO5UJm15fJf0mQ6NOJ/2UmTT+jJnJF5R6u69jJ4kHOkGV++d+r2iMvmTmZY1+/G0KE/ZdTJxNulCZtdGB9MrKtuwxYq1tvERTFE8t7QmKITaSFFgeIzKFJqUIogGRGLEYhiRDiW1TFKWwwFCEMmTlSIRccMQZ/GGpOyxBMRxmZ1OISURAEUNxhIiLKYYgkpCLS4hRGoFEHKMYNln1hNojogSxBEZRhhjc0YZkSkAwgo0wBvUURQRFdjNJEU1QYs8jzIZ6ktmrw5EUJRglxB4IUQ0R7aMZ5DMUWWuSFi5Z1RszgihfF13XqLr3BUhDPjrkPJ+fRinxwazkc1HCK3FmPYnQlpc2IpyihaoM6pxI/dyy4fVK5vpMGAO7NHrPt/yUG7F7CdK60+1kc1Xpt40yL1S5WVcaoVyVuL+zKsmgT/tbwyAaLLDhQjxYSAb99JN6FaygjRagXzW6E+dFcWIlDqkBkHxTlfvnjeDntZJjM2YT9+DMxCYvZSF59SeQ1WqxuKD+/bHpqnt/WJR2F1FNcbbXwGC0+1s0ygbDNJwOf+Dd2vuliCb2MdY5t/HGLsll4P59uxZjEHQaxLZ3BN+Jg03LRvaUsP0T/VyVRb/srHzBa7NpXIEAKbCxd39WLUvhmOCSKry++flc7c48BSJ/1rt9DaP2AvOlQxdBBqBxDAJtO/etk7E366Wwk8FOAneckkW/TqbUSbh27lsnBST1V2stJZ2VBHdqpHZ5CwdtdHQ5yVLcPuabSprTbmBkft6aSvyG15v1XPREGZ9JbuvM2eQSk2bnoqlE2RIXfLlRG+3jcMDpQuRyDUO/0ELCrbv+gAv42UIsG9FdvHTFlwfMreIhJ69Mu6NeNmp9Um3fARcuXWA26W4503kja0s5NIdkfy4OrCqk5vBWFMN9NtLA9Ny+CQCPsdBADG7MSjWuvoLUAa0NsFKsoZ5CxtHLMbSH+cyVaRZPpObvIXv1D5xfPzgMlj9JNUdKXtYrbku51uiS70UzgsGd90oVY3AWcicKP3PQ5IDUaAdnhxm8lHvbYRClH3z97QtQa4YNn1Fi9bOXfADE8Ah8BYvnV7EYc/KOweAVENG5E/Ja7YleC+FjxF8YOjUc51LLKC93iJEwc4CxkNI7B+zFTwAYUIw6xKIwuXuKPft/w+02ADvCDqi9VU+zO0fsl/uPGAmJD0oSsrsH7Nf7DxgOpx4w4NrtZLFcrde8KlDlPmG9VeV+qargUPNzbGMTcWIJhzi1MHqMNqZbh6KihKqNeDHhxfg/dgxldeFVtoo+4SOvsvNCf9i4ADPwCeC8Elq7KtG09aDr/C6LQrhPf5MvO3gA6dDDJI6cj2PSVogHF5ObuPjzPNRiaUf9RcRXmHjzi96Qi4OkRULahmAWjar/qeMXrEc4vVIPX98d4t/Kb9G+SJXrupS5ND2LSsv3k8pAySpczXa1Ej0XorYfAd5U7xpeaftF4rg0uj70lpY/DPgkTPpwJmPwp0kHf5Il7KeBv/hxwAfMWYZHP76ktpiz0TxxvgAfMTpaiO6tX8Yv48v7/zIyV3KB9+LbKiXGL+Mp+PjSs3jm37uXV95D/uUXz9LlkI++GfrbCYYoxHTE+bgrzMahwBy2cYgjdkdZ6bqk/e3+kxbq36T9UJp+X9L+doW08xuQdv6DkJaG0Zi0UZ/AWzhxmFLA+M6JOhl+6eS+wW3/K/LJf1BLBwgc1dxupgYAACcdAABQSwECFAAUAAgACACPg9JA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAI+D0kAc1dxupgYAACcdAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAPQcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Version vom 18. Juni 2012, 15:29 Uhr

Verkettung von Abbildungen

Definition IX.1 : (Verkettung von Abbildungen)
Unter einer Verkettung von Abbildungen versteht man das Hintereinanderausführen zweier oder mehrerer Abbildungen \varphi _{1}..\varphi _{n}.
Schreibweise: \varphi _{1}\circ\varphi _{2}\circ ... \circ \varphi _{n}.

Anmerkung: In der Literatur wird die Reihenfolge der Verkettung unterschiedlich angewendet: \varphi _{1}\circ\varphi _{2} kann bedeuten, dass man zuerst \varphi _{1} und dann \varphi _{2} ausführen muss, aber auch die umgekehrte Reihenfolge wird verwendet. Wir einigen uns im Rahmen dieser Veranstaltung für die erste Variante, also die Ausführungsreihenfolge von links nach rechts.

Verkettung zweier Geradenspiegelungen

Gegeben seien zwei Geraden a und b. Wir betrachten die Verkettung S_{a}\circ S_{b} .
Aufgabe: Welche prinzipiellen Möglichkeiten bezüglich der Lage der beiden Geraden a und b gibt es? Ihre Antwort:

Wir betrachten zunächst zwei sich schneidende Spiegelgeraden: Experimentieren Sie mit dem nachfolgenden Applet, indem Sie die Verkettung der beiden Geradenspiegelungen ausführen, d. h. auf das Dreieck anwenden. Welche Zusammenhänge entdecken Sie?