Benutzer:Oz44oz: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Oz44oz (Diskussion | Beiträge) |
Oz44oz (Diskussion | Beiträge) (→Spielereien mit GeoGebra) |
||
Zeile 11: | Zeile 11: | ||
== Spielereien mit GeoGebra == | == Spielereien mit GeoGebra == | ||
− | + | <ggb_applet width="1008" height="451" version="4.0" ggbBase64="UEsDBBQACAAIAMeD0kAAAAAAAAAAAAAAAAAtAAAAYzBjOWZmMjk1NWExZTRmY2VmNDQ2MWVlNjI5OWZlMzdcd2FnZW5yYWQuanBnnXpnVFNd1GYUFVEBC4ggEBUUpSq951UERMRIR1pEmtSA9BoVEUGKiICAEOlSIzXURKQEBKRK6KF3CKElIcnN5P3WfDOzvpkfM7Pv2j/uOmfdc599dnvuPcxR5gzo7EMdPR3QkaMg0BHWBWJOgLRAJ0+cYD9x/CQ7OzsHx8lTZ3g4z5w+fYb//AVuHiEBsLCQgKDgFVFpsSvXJEUEBW8q3ZK8fUdeXh4spqKhLKsuLScv++9DjnBwcJw5feYSJ+cl2auCV2X/n4X5E3TuJGgeNM125Bro6LkjbOeOMNtAYNZ7Hj/yHwL673LkKNux4yfYT3KcOs2aUHMWdPQIG9vRY2zHjx87xhoNY42Djp07fv7qnbsnLhjasV/z5pF9nZh9UuReRQuv0cC2qNzzl284Tl3ku8QvcP2G2M1b4vIKikrKKqpa97V1dB/oPTQ2MTUzt3hqae/g6OT8wsXVx9fPPyAwKDjibeS7qPfRMZ+SPienpH5JS8/JzcsvKPxeVFxZVV1Ti66rb/jV2tbegevs+j04NPx3BD86Nj47N7+wuLS8srpG2tnd2z8gU6iH/+I6AmI78p/yf8R1joXr6LFjbMfY/8V15GjAvxPOHTt+9c6J83cN2e28L1yTfX2S515idkULh4ic0Tbv85cDpy6Kys9eJ/0L7T+Q/d8Be/P/hex/APufuMZBZ9iOsDaP7RwIAiIf3sx5dep/VQkxE/ze5hVEvnVOZ/iG264KE/Qq3i3mr6bIJHtgqSS9rJRND9JjIvhs89Klro6XbiomsQG3tKsGfUwK/lbT4PvkgwEmCCubsOTW5tmkXbTO4b08CZUo57f/ZPB+7HJFTSC/oLMQozizOimobxHBRaA6jyILDWPNZC6MXSwSngFuDFwLiyu2JAJrnRz0yNsUlPY8QyWICSrwAHjnncRo0mSd3bFwcuh8PePOE2hIgPtWxvUd7HLBwHAtaD6pBZwMHbEaDe8kWyg0yy6Erz+psV9dKkdI/t2ejeqOgKnlodWU6L/LrphRfchvFhIez5P2i6RqPqwYwhY/LJ0DtrT4/5ic/Ue5r5fy7K+k1lrEKBWpZWgrAZ+3sfwTAN1UGTPFwFTuv65o9eMHCVPLk6CUKJ+K8AkXHiZo06p2aH+8o8w8wchGMVhByqch4INvpt6IaMOOGBOUJRcXd7iNYLM5qVD8KeX7u1IpHkOTKzkxN0H/VfNya3zSidGl1cqQYP0/BH/e9X370RDgad74ww0X6/HGJvSP2pAPRWY3U0vuoDTwTeHkI2XVhTt83jCVOp/YsIHRlyrLKNdlmSZdRXRRKf6CfEXY6AETVPL24wO2Y/ugN1CVn33KpS4zkUpNqB35qKWFVM6kV5qxd8EJQnVrZnDt7OpnDe8P8BDXgBBk9aRSzwBaZWbZG4fSGkeqw3cnpycZm6Ta6Zccag8uzewo7wu5GO3MLV4PlPR0iDku++h3/eg3hyr7WhW6hG7L9mq4GElgHNbUaHlBVLwUFHr2YVael0+8qpnh48cdcRPGZ6YLmKC9m/6NCJ64T8EHdOiyZUoWP35fChLWnD8PyaTDrjg6bta9fmWCIJhujPtHFbwgbfyoeMeluSPTE14aBIkusza/1xrg9Bhl3zpP8ZuLojYl2xCmG8D96fklq6qF725EKwTYVN3aeepAQAvpKhBrFrAC7F0FENr6Ycz1qBjLY66KPY0QDkqU6ZDHPqd8y8LDxlzGjBDpj26Naf029sPmwpT0p6FkXE8xqpFdZCsLJxrmNhwO5qZ8q4YfzjMMfPcfvnUXM0QqWhsoZDTAVl/+JLTvfOkTvdDKRQHCq5eaauvT/B/1K11O0Z5nUw+2X4Jkhl1QaDLnqLQY1AbWb4rsKHSvYblC1YrfQRxoooWUMgyUHpDMEBfm33MULyladOP906dCL3C53fwV/GXG/srrN4991jckEPok29y8hiBz8QFEH/+lhmdn647tcKh0QESerDFB3AoM9tAGk94gN8Zf2vza12WAjWoun/5Wplla6emkTPcO7jOx9dZq16qFws1mXxk9kfFq5CWLtUcf+4BoX4I4TuQMK+4dG8DZLQflGQoz50smczZ20qfMX2553m4m+wljI32DwXHwvUILz5ysJXzCFLr32su7p3Dld76CBxuuwqixi9CK9erkjIK1A8v24smn1pLRdH26/obuE7fHDRcw39tu5sR8+x9J56GaucQc8vyNCMdKqbIQWaQUok6VT/Mn4FRgZGhu/3BBU5xkoirpAffkRflvLdB/xLc3M9j31hfQqnG9jKFHxOXquEZyXMQddvavr3FgGe+JGI/JXTc+6G6VJHJdvSfiqkjSRBYwX/hYxGJxulYxpLAhsan2Bf5T6yuQEOm1tVFGkqrI5SsudlXTieEHZobgqZlnpCZfSWVwlPvXA1tBik9Q8SYGL/zgCnAJsZibEMpo2cSv2vBFNLF75Iqa4ylZTBBRfP9BeOYHRA01OGuXt0xVw+F+sa+OY0Gqi90LKSmP3HgCEFS8HdjSV6RZ0HR06c/8zyy1lHGpCSnp4+0omvf+aUqRo8JechC8Q4pzaUjKr9uXsZkb9BJRh4uggJetHqvanGMvWr2YenZ67G4AGzEmsC0R/d3uI0LEbP0PwLMOgW+vu/xhgpor4alAveJDQNeLfjwY7Pq9seTT38yImiBIB3ZfFUrro48029cEyXQkJebKMOSTDo1Sf5loitRvKzNBMRIPmSCUN73X17SPIgPcn5IB6hKWbY4bjabWGWrztPF2U6J+qcLez8GrtRat5097C7MloL4fQPL9eD6nQ70L7Vv8EBzrtmcDMp5PrfaS00w2IESuYgTU5ynJRu0XwTkyTRkmraN8zAvkmRvP2Na4Y9s8xwTxjFEQ+pquZe3DLSmXzXBE5QV0Tvzy9rqtUrZ0USA54cRXvJr55pmR7h0dObL/Pq5ANvCgXPyjYbDQ2QDLjIbwfKnIDXN/lOiZEjI6NE+47ZlDyFnO4JSoObUwp2vFx8zvMEGlkc2QJsw3IHMd5w6fTXeuDXiRD2to1iKrZxWiIZGurV4HPtd7MSuFCWpPg98R94/5nSjI1D1xPq7PM78c0Rq8YXmQgj698wcr2bUSpluxJhHeONTQoDL+o9pQ+85xHqML//Cnd5R55KwO2toodWLFUQH2A7r1KJ5hP72auHtPyzVdnOH7yElQ7HH2N+zQkQYZ3nXsRPDbEjbPWvTvX9hp9XcI3CXh1un6ot9WT+8zQTLj/LpUAJbsbYqU21G91dEm41H1u/qHAf6Tnan9sid0Cla0Od5s3ILhjGrtDyuYNTPQ0aZmVNvTShhQRL5zqPo2biwHGG/WWu5lgoTXCL8KKUApBFoWfN3tYWbz0v3FgdPaPOZ3P5r5F9pz5RdMWvQBxYE9HpR4rOFI9Ytv3MjQy6HTZ0noMWlsQK29i3cjrdSLu/+28d4NzGshiTZA5gXSHu/h9yWJbO622EPYvAnkghNROttmNYzm2RCr1DD8OWAJcbjSdIESqzT/VEtnzkXKyNnAFkKqOTDIFqMZIR4enCIlxHMyQRcg3IUMX/hf18LtGPC5lWkOJihR7sG/bshwyynlPs4EdablMUH4hhHGf7rh9ZfTEiQbZKRvn6p1t59YN9wTG6wDvAqAjOSTdKMl6TL5ClMjlmZqHrOwZolD7rtrIdy/m2wHhywpkXOpYbRC+P4QolvtBe1aCJduESS6dFntBVr6DgZl1xD2rn4+gUe9V0JhGEkiefelHgs7Giuc+Q8basltUh7MPRYI19eXkKeaL30yJi94buDwVK7jaq2HvAlR8tUVFQmuKIIPOQ8ybQ94D6JvvpUqmbwusVKrjusAjtCMMUW5WkAiuQBtq8QEVWe+3hcCmgMNVA/cutIHV/EOCGkilbje9w2M3D0UxceG6m13r1qmrx+AypoGw6nmwNPusaiKZVLf91LXQf1p7V8BA9F5rudXVBeM2ll7TLvXBSbjlcUurXHdDisZfZYp/Uwv59nAg+zk5ruok5X1tGCpPwzsNExH8BxVkLssWOb1Prw5v6+xKYV2OE/5fHju6/zkYK6a2u10TKEfyzeevje/NW9jWr0J7ow+6PPvUPBcq+tWmlGmu5WgbpDy59dUN3/dX1+0Qo3hJ77W0yl0CfHKxWgvc2fp+T+R/mrixQlpwcmrOO/OMs4bv/BG+NJNYkHMTSVPx+RXhIQZfg3oQ1xdve8oUqY3xZOyxwRBLMeaKCGo3gLLNcVdbfUyrlXJiQW/PhE352PzgoI+69Ze5gEVTQkephPk8E1NTMiQehCKYru/4dk0bDEBqBNNtuU65DrpXBLD8jLvxxWrz9+CbSgZMEGSS3ZvEGOeUaT2gFsFPnXV/p+N2PTNHrDc6Ehv4MQ9JuhtxC98youMQtPdq0xQWBAYKUJCqVC0yhgZZnWD12mpEjss5zMB02SXAQrKVWFGU7oio4UJOgsMOWSYOfH5A2lTn7BZs3sKn/cCpFVXQrZRFykEJugqgYsJapTZtdwvUwWEjPVqMWi1nLrYB9h7cgmrtrqk+trAiFYmaP8PjMHh0jd7MlS3kKIGaHOKAc32gGmjhS3nv3Ggw4oDVl7eO2eV7Pbcdg6vMQc7Oxro9iAF2K+DpSinEn9PJeuisHa90LL1FE3w4PVh1NLYMURG0oBJgNgPFEdj80j4tcBy0fvUCYkzkBa3i0GSYSFJw6QNcTGJF2jxO3UkRj2Jr50TzXALW1rurvnQj/hawdBobLU8nvBu7/2G+4VpPe7pxMYqRJRnMjiy6Y7jbJiUhxSfj1KvPI74gNF1sCdUkpNzrhbl9Rn1rdrogoUqIcY3gVsLa9RokYnZkNhlRbK2IKChsX6Pc9Y64YMf4yjuURbO7PPvIR3zjR/lVGR/pJDGXWXe5fBrFFSxK+pAg1+gQ8yjuHuXVcseeWHvJhF1owD+dUvc4ePvRHsepJx8mpxmcGbhx7DR5dERo+S96Jy4msSMWaJYV0gGYt/otqNNXYccPqsZe2pFpD5EbVSaVWIsK4M+7Ath3nrrflC/6jHTe2OEph00IiPXXbfrQPg0dbmA/ZH3687S9SDMmEPqnVCsNJFydk0zuXNubqPXM6uw1tK6PciZt0fX9+VNR7prrzcGhNmtflc9BWRjYGQrZP/ybvmfxmxpR5/MEjm5pxgB/0S/YMJOh2z3Pg5cLtGyVJfuTMD2TpHTrEQ0LNAYNzw9TLOPK0iiUe4Bn+shyIIJWlGYq7iXQd9EahK3fqyFLGche/AazmVxRVJcrJKrMrJPM0laimD4dgO/s5DRP+kGId94lwlcm635jLH7hPrnkyXxd+rilbeaS/rdHt6p9tTW9Xd0E+BKLZ8IQxpXvFmCzO7yJR8K526jZPAAt7UVPKM1INwV0Zc5wd0FY1V++vrYi/YXc2kc1aHkPAqhDcPVBPxp1jOH0+uniyYSDi5/Bz9KcN3n5qZr9+//SNSXGfWcACwmb7dANrBah2DX6eE9AzWrGsXx5M9Khv5P+bZoRWvcde1BiPfhXKzV6rZ7CenY3UV/Qg6WCeKlDo/lVDtXOaVgggZD3eZgJ2zLM8OT2kqYIOmA4gc4Gucwt9dDfMEK7PyeB8xBCcpA+hJa5TijGHhBMI73oV50eybOdQZzawU8jrlM8+UAkgvRXxuDPwN3qM8A3umjAmnX8t4b/qpEn7lcV/D379vMzL7bFG1UWMGfda1kskYVfzbcxH73yJ49kgKueR7qDSapDkDG0BlM0L2HnU1PMUKhegQ+enBp1ksUecbzJPmKJ9iU134Og7IvX1e1WvUJy3/2TvuTttl43kcdjkvqbIM/lsiW8uhmn9FQQchc3AB2/Y8M45hpnLFx9aA8FY5asiibtenpQdxdg/6jhofMypx1gWxHjXpiX4d3OQtMeroHOZ717FSfEWZwu+4gL1EqiTjLBTNFlpUvQqVHpsL3+r7C7dZCuFpJZYKD97/vymrALf6GX6XE3/QYqPWccHZk/PRJE9xjF/wU7CUx1iQ0Q4NwuGQ9gjU3pS7V1WlYH3JrC0WabetGeNDvFBylOQw7GR5EN2ucQ4yBi5aH+GoI/C8w4DOpqSHlalatu52II0Ok9psd491eSZhEVdVlPyLfC8xlKOWLTXE3ehGdsJSMiVHl9nlNtDUvpT/CK9RjcLn3RqJFPExrGQtEJugoWwLlZF99kS8kMh1TzAS5/V0E+p5e9gmddiBu+fTTkpCuoWSK1qeJWHy4+LpqHtJh8CrtlN7Od9i0tWaY8k/6Ec196ahtnOVI1LhftO3vW+Eu6n1ZAfTDcLFt1KP+0Os5FE/I3mntp9DpuqTlREzZaMiZUyskXRHEWR8r+6/9oSK5gf9OUNhFxLhoBl1ewxX2PzPXjbEUH6zgNpawGTK26EdJgsHY98XLVX7GlLPcs7YXsh9tM3LGgENgF/4oOKHnOSYGdYp0MSsdliCdqGmaGPsBWI9lgjQhp5bLG9IHw7hSf/EVOZfdjzHRhmwBtgt7xHXbLIlWzeHthl6+9LJjnT2T9qc7lyd4Nw1tbtXEe5MdnrSS+AujguVvlReCSTc80sPSEUGZ2CvsQK+t6ZnGWWhmGoWKPs+xPEzzB2pWYecJyzXQrYnfhOJTu2G0Af8bm2Xk9EdfQcHxd0YqS0hyD9yDl1vjolrj1+nmnPSURgESE3Qm8BDXOgIbGxzXl5Djb+ocu0f/6R3RuWpVRArR8ceNwrEzV7mBXpuzn90d5iY0zsfMcrdz8p4QrcXAUgOmEgpn6Ma4djDXPACDEPsoAuWBZD7RRqFm3g7uaECACcrCiwBT4/ng83QJuuUHGdrIDoIkT031flnlZjJQvenat5Ge/FXpyTmy4xPvLe4nYe1BWY3bfrNTSu/gdOyhT3N39oGZYEIbuMyfsF2pfp0Juuv376ciJogkv0+JmBVjgr5sIukc74HnSYv25roJloEJ7ZgjTfr6nXm1UOp+XfcvJmhL0ZsJCk3ckqiupPRm99pfbYy3kBkItwq3fjgdM+PdV35bZamhBHUxUM6oxs2tDPYwi0Nzz6czHzosQIK+FzB/W12SWr/d2/YyqH9zZzbjTxz/F8Z0nhd3qE+HuIKVbHVIrkxblgSGpFl4UG8TIE71rkTd/boJu3uItOy14i9gGaEMGEJ8HYlPO16bUVg6WED8HDqdt1e6ut/VxAR9coIdOrPDy2/+8HxwGDpCWMtMZWwxIFBUvi/mGOli3OxT1L6Q0eCSgbap2ZT9k3/Y311J6gg89nXGS3X3j+W6uTTtOoNIzk30ohwwQRpF459vT9iOEyDEZ07CDiEYc+PYj8FvTIBnRkIb/umFbYjzlILlDYF7zZVdZLtKM9kffQHr1ONlQmyzirmIWo+X8xuJSj39uN0eFjtV+gchZ1uYvZL+OPp5hcvFO1b3f19ehKVRZqqE9Q6TrEwf8lG+fKWJXLi3XZs0OxrarNh1DdIuZo4oEUZwJdfHWEpo3c6JufWK1TiB3jVlzH0Wfoy1C6jyX0FoxOoxLpmXpu+CPxQ6BFuxuiVT+u2aZNjbBsS5zk71jEIWkSFj3Nk2Nzdt22c/JMm82xCGNi9uMkGYx5D8oAsTVLwhpHvnuxMxC9k6OS+iji+mSMPlWr0Fl93jsRQSZKSisN5P8TYgopOxkQ+fi2dVS8ECSFnQK8RkQ2g3g/iFVVGsmoPRbe+ZoDlzZ6WunR7zJbKRLhBha3CBGDk7Vs+yJexhDPaCeBYuaFaGbUX1IB6PTxnsgnyxn6xS9QKJvPIeXqpZomjP6jW0B2L1U4Aavl8lidJJQXy+aVa71oiNguZTDXa8v2PzpvrUmKBIhVnErOobhjSkzUQ29OL2OncKzRRGc0f+dRtcKV5IsPPprl8s24ZoM0Eplphi5PbNPqDb1IHC9xzxlxLxBEZmEQHe9c+GXcItfdLLceBXxYgl53om6KcpC0ExhPIkHhnQbsS6L8UxQXy2Q9qCiVz+gT6hR+oA7vMo+inWfpL82gPJP/mmT73rC9uZanmJW7L4fVxc9azFgQqqUEbGo1Qqa27N8R0Praf3tS07iQ8H206dbM8ZtagalURKZj0Nyvv4pvgJVwSy8W9zsWju+aHP8UfXDtyQ3BssD395HC7V/H6VasoJcWoz+ICOFvWkTJoekr4eocaEjpDHNQu97REvusXRqfIeLXTIF4XnvR7nyLmVTFATdpkek9LCVXd5q2wJDZ3lHHX/s/F9f0aaG/yn1PohWbG29uanqge/lPF4nyOx8VFZQDLPoqJcOxkSndas4aarv416X5N5Z79XsePpTK1HBTWIO+vlb2Ux8MZCbH9j3OjKQgUlc5aKfL6uaTbXfeByZiVXLKfIE3JKhFIzzyl1YPubILM9Nb4B6YKuW2Wdp1SEFbr/IJ1SmNTfYRR63niECPV1D2dft623K3IJv1q56+H4ZmuqYU/5wFE9YkPbxG8serVBPRdKmfXSPfTM9JChPXnQdXj2V0MJOFaA9zciz8r2LhN0xByc3bdqhSZw069/3/X+ZrEF7HlTnXetBZbLgTMU2+d9roeRGWDqoncdd0uEcfWA5rrqZRiY4roMPDdkkTWb5KR9EXCZh5Wrv1IE4+LhOOJw+Rp6R2Gxkn65sRZKSV2veIgM6W6sYYLGPjNBD1ubKLC5CWcCj2IARGn6zTwnBc5GHehVaABL2vaQmwbaQynGc1wxMdEu5TolyHT1Tsh1STU/cl7UXEDM3rJJXSOc7Ln5k971BGGpkbMmrdt/eL6pcP704l41cD3ejP6be8U1P6G917qjzzt/Qr8mQHGKRFpHfjEzy54zIS1lHySIbSRa3UyAp2G9j1W0sE36bxoa5Vm7x8QKBNhDQjMQkZa3Syeg1gfqwXs3mq1aOKpab3MfZFDxnyfFiDn3tZ2nduijKj9FlLsYaublgXcVA207Q5SAt27iVvEF7RCwJaPwV8AZbDD/xbvUTUiuACmydgzrTEb0DeP7BcpQE9UZJfcQ+HsDgOiz8JoZpSOzGZSmqYmMReGxjpCD4jYpT1UrodRfblixp8OlVoCljijdZJ6qtOKGd2uh3wpMD4gtlVYC1p6qp+y1OgbRH9BLptrdtKdFTSw/aPOYddhp86R9O1qPPR9Y9Xh7Ck2c6K2XqJeap+EmD7mDl0NtSFycSn7xH7uk8FMuDXmIx20JthGEfO909sgahICNwuRO9/EMxVUZ0cWF5Y+v9iGbwuzYh7+NRwbkY1Ura7OL3FhU0c+hCq2TjEYU2YpEhlnssRE+hXD9JbiECwwAQivG60qNnvDnCb5JHluB5zq4H306Efx1F8dWNuArpdZ6cNql4GfFfWxQQxXSTEMPdZNSNgfdlHKUtwpgEasfHkMegMr7VZZLGlOTVo3w4ksh8fQ/3fYZ20zQu3LgKmVkbgvYgonrKPHFYn+qimdrcHnlMpIVwHH0C9xvFdSs3EJWxaze98QM6sjWKeO0kGUhEBYr5UL80pjtHHGYCPKJLpf7qycoRj/mvd/rRbicCtwIhtLMdoBY7LyWWdzhG5ffuKuoQF5JdbFct9UAqQVz16yXla+uSn4rP7q/ILtAxpWFsLca2EqZt4y8x1h2v8A6J5ve22m+zFYwG7Hfq9Ta8MiS/CtDSnp9C+q8uAXMHtu02zrJvo26va1Y4zML4de3D6Plu3Dms0jcqdvK5odsEcitJIMX+C+e6Rr27ZqggSajOMnoA5aZZxtfgaYnonTBtmEnURLN/XTT7R3y5u9NqXQmqHu/cBKXm/2HnTYm/A7zNs+RK98q3+pN8Me8gWVbPkqGY/G9H2vXPQpZua8bKAOwU4DtXDMnv4PB75cCTUPt4FNSMqIhRG7VVTIyKJuV1M+Dvy1y182P1wuJtWOubpuSD5yK4OKsTre7ieAdRU58p6OBFxk2KVKma1WGCFNjLJf2uC+uhl+NDO9W7GKxLQ5lROtwSMyqxP0t7VLeYx/bZd2TefG00nrAT4Pn5/JWqNDseubWuEFlVfnIC/Nu0TBz3vnxlDR4dmDH8uPBcym9DqcGqlLWcr279jQkCGm/rjqt2oKqmCBXyhsr7Fx9WrmSTIEeOOrhEsohrkixe+mBkQdNST5wAl2gd2X5q7As4tR+74nJCUp4x7m/dtaACGSkKeeS7fKTGAIlb7xkLUDxSIfy/CS+Juf4P5jPP9bN2g3j2wNhsdWEDex5G0Rf06cgQsTu3k+1KMzxkHwv8Hnf/AzoB8OJ5LimIuyU/Q6y5QdkRqe67HKbyVTaEnLK138XEbW4pQLOVthquJjXUB7n5q+594HWstL6DpwZeCo6UTPsdwyhra6FXZPwGGK5B303PkOzbnBH7fTSOhHTbGcgZ4/QJcSlexpiVvZP3ZKzJrxvMi2keA43t2V5dEACPGOVlOr3hJf3y0u+CJDRI+MeJZNTjz62YYO+MEFf03dgPJSD+af+PwbpnWVWZITM4VjVBNs3zQjSXmlILxRGmi6vPSha+kGrKHmufCJ8V7h1cgfxcI9wiiKMa32BPs8E5bsakMv5Ax/tn1TjDi/cKy1frsj/HKCCPEWXJcjCAqOWoE21GphKYVZ/Gq8RJjEsEikSZ3jO1NQ/0vAV+zeh4p851bEmep8zVAh86wMUt9ZUcyZIBonuRsOID3zQ24JJG5xB0FYsF6Z5Do62DT84rUO730PYGXz+8tvhbgqEEVwxz7DbJ5xlxB/b9XDP6IozBywfPWAXbprhfhbmNkQXyxaLCtWAP+eiMkEj1noMKlQyPDPqBy8SJyMKawUbZ6OuUPDCtCn2KWfYCISEgm3aGpDKIAtHCXuDjoyzrCJTjOS4TYnHzVIJMx6STFAlIbcmCNuhwbah+hf1vmyIbB6Ibjj4yFaBPXuSCXqVYLkHeVcI3LTiJuczQQMoy/DrA1dJ3FFE+fr4v1nqEgjvKHHCa9BQzRzHuA6kFctaAU6xlFEg24yHz8GNX++g5+5QImwyQ3e3160yWoWlaJws0yV/GbeRQLCxvUKwEfrTDwXeq2XrPY20X7e8mDl3+WL1cJlIFmR2ivzxsITLhBYzmlOa9ItFIKIO8ZGFIZv8+cOSfFI1CHzr1r35QOFcpKElhofyY1Tfw0G+ImzACxuGmBZigpAjzRG8Pyno2YKMuVuiTTWQZ8MZyGqdpgeICduotdvhNRkfLNsG9DRE/S8qjTTEVU6OW4sOQKYc3BOAioOSv7u5XXMJUQ1IInnC06PkWi1FDNzJ4Lpknk/xmfPPLM5pL/KoQNJ6CI2INgYBlxDMM9LzmNvXndJnDnT3O+5kuJPB9QnDzsRze/x0b1sIbyN1cIo6SKQ1plUlxgfTwlTNiLEKzvgm3UoWG9KOIHuh3R084e7IfimnK/fHka1k/90sqv2G9yFe6qmtzvDfxCGKyOMQ7Nmgvl1td4w9orkThlMHeNf2ewIh2gBuQEQXRjCgdWla+wly/wzPw0Nt5HO7L/A3/igOOHiyZnZh/HFjTrps3J5IjXVOzRUqEVaR3mqcchmV0Q2/XktWOW7B7eWz3mtWkfXC6fVc2rMUxctW/oqy9KnAPtc97Pv0YwGKhPHOjNrv8fOoqT5uXMEDTdx4069biDBvp1W0J68/mV2QxqWrodlcJ/pV1Ld9V6RuBCOmz0gTVHW/JqU9zymfFNb5WGWce1qjI1CYIZG8TYzcRwqscXrtPqwNwYaFKeqrbF2ABAIRe9/dPaqJmxlKf2ddNv5iQ5uVF/wXXgWJNIcsfntliTuAyWzQdFMX552mJ7w77li1ktMrLy8M8PpqsEO3D7Jqg0M1LcOW7LsfIJpw9WXBN8sjzpZDcQLU/moO9VQmSL+O0aPZtg9nmcjcpLfa/B2l0CKjXfPWmGN9kldtFcwIOn3QJ6b5yszv+u8Pb4PSirbntWj+BeOx0cAHu+QEIP1xMJp+LLygOdRMJzK35dtKbUMo2J+XmkHbCHKCGCdZ7s0Km9o9tu6R+A0oyByeYFGVqXo/+hATVGZbZOtCSodQCn1XEY1h9HnEdg7ipJYPfDYjKIuD1QI6uSD2ZBFl/rxtoRJhACuQ/NdMGXeBmomh+E6oT5um1AvwGOZKBAwN3Quha3lvisdz0zl0NEuItnEzYV7rWZfRyQS/Hkh9BiOHnZMSy+rDA6vuQc9RXHf13U98Um8jTCYGGVNfU5yacmedGhWTUUyQsy2weQNe1VlGP190xbk/IpnuGs4fnNwEDcqJkbh3NObmt1PmtYr4g8oJmwmc+vmwlYUnvxGntvsuUoz1+9WN4byRbXFuMr0KpdjbCaIeR6o+cVsLv+IKQpmRAmKkmhTs6LK2+kCBIBM0jxsNb5b4fVXOerI2N3hTwuCq0xReZWF3FHHVej+vzN4yQPL2O3D9TiMiAZ8A1LgFat0H8COmW3y+Zj2iSYvrjIGhIhHIP243ToJNm2GV2Kyh2tF5M6GQM/GTF7JaNdxG6Bq5utkuJe558mW7vWJkgiADtML+rdSlNS1V5enlnJQYibrlf39AS3QJGFwWyams3HT0nNk/0WTeDlwOO20WjQfURfs+TSJpTmEtKyGkFe2Q6FKbEF30yF60u/NkNrDwgZxrNxBVxwgSWlf9uKR9z8z5fWnWS5GNyUbMwfRk7G48PZx3KlCpHfZsopCAPbystOW0yb+nids79J1TkFIltuIrJ6ZbaaNA45nQ2SRUN2HYJ+tLcXdRWL5mF1+3zOklj5ltfY++8DrhscOde48lp/XkVmZc3HB0jfmQZgmPphW8otvOphO135lisc/WD/CuKE5fHyyv7iLmNkLFT/Z82pr5xiYmgqLgHZzSIj7ogNuQ55gg+5V3HSdYSb/RCLtVeA8hjMy0C5XoF5q2ebmqqd2j2NgcrJbAOIb4WRLbVN9IIsfOPYABmgvj2L2Oq8PInDdhfSPNxMc/0IN7FEmPJ6JndURMD9iow6hg81u04naSvjZv0RfzrNDnYNIDKzQZnsswxe2jtMr55tpsA95YMTK+QwGNhHVjqSihNsqTCbqYDE3pU3g2dL98q2l99vRyK3klfGcaoTzYfPH9xvlJiRZN0VXIdgJlzO9Skkd5EY2YWt39an5NZ+RwqXmrjvAeIyQssh03fO7Gejd8LwN2uFKvDCZydlMG0xsEbdIKZw3sFKaOThO9XPypL1kUVRUIBXeg11vDL1BSu/5+6mCVYl2sTQnQUyyL/dJ5ONeMk5/bevOwx3JRHTp/Gsw5tpjm2PQxfIkQAKhPfyASap5Tcuc0MFm2Qw98s5a3qqfsE1YZ84fc4cnL+mfGk9ddVfN6pYkZS2vBLxFcfzMfFqvxXoJ590odNH/XL3Y1lvOkon0PQWpHxgs0/eYZ6VMTNKw0F/QZH/Goz2H4Db2ckLSUcVEnGNUZLTIh6AUVtC8Io+7B2QMN5ANH1kiQwYwtHG4LwBQmbci9tiY9dh+o4bHYRka+i3ZF84n40SOWiIsJW8v1+57L4w3AsBHe4XlOaezlOkNt3nv/ed5ChXD2xcWsK1U7nie65ru1ZOOfJB5GTCKsBUg2iNb0wii/Y7ub/Bj4VE+xjajK2p03Gt74K94/FfZsjBqr0JiakJDvRhYwooQ0om+kMlNBxmhe03j5fsN9Rm/rpkdj3tTwUZxT2GNIYsm1KWk7quKm4zihL5HqFVZSS4K0KlELBnFZX4HNiqUbwZtiRC52dmSZl6O0RzkyFCIfNHVZWlDQq2zoddch0nXB9Un/mIJIzrZiUWEgzCxrbu0iXOW+5vP9t85i8TOkLDpXzYaiQM27Eu4MuwDBVaD7pWbud7p2KO3gc7pQ6kmCeEKa+RkoW2GR6ExIyJB9vJsbSvXXZsqsBRNU4pHQ0oLTapmrKTQbl3U8vRYmox0Yn0kCt1nCu7wXYdpMkIEmmbGHxSsMPQ21GboBXk1Rug1hyDl6H84AyQ1FFx3mBlb2caFQA4CtGTL16QYT1BkDKdMERwvzfQ7F94IZvpFM0DeFhPkEnpXxwgjipmQ5nRZtqijeMfVVOO+ZF6eK3tM3jxehEZ+cJp5CZ3evwXsfsBi/27AbK/ms+2eBw3RphvTItOfjE/qe4jBIgMaXcL9JA5JE6w9GVyESqP+FKBe3u/5bRcynIk9hCQ++KKmJqBrt3ilydBm9MnNhQvPLunVWybwGwso/6s+La3CqvcfnS2T3BSAw+2/M8RM9YYhHQBslLgieX1kt7Dxut2MRvhh95snBJXdWovNct71OutiAdEhxfMOC9lQIc8++P0uPjhDvHvJdeOextb7EBJ1HiYZ4A0GFfQEYeJXlr4kgaoPyPD//DFcTIu5lQ0I2Wualvobq4B/8n+S/SFpvv/8MIsnMLmkzVc/DzeMgo6zFf1MkS/afln0xlZ/77Qa5lBBzfKY5YCFDr3Ucj46YYBOd/0Fn9be+MmdcAOFXZaUhhfD9JKVpONxuA2LpVbCM+eVjKE7xaWUzOB0QUqm/iW0lXzuAIYxtbHhqxi59LxE5MTF5Mycm+ziP4T//q3LE4P5WCylZJjhu5jT6J201MC75MCSepySZTyqqY00otkyQ3CraTYxsX0+bDFZmEWxr29zZ7k2wr1JtUhtStjS2XqtuYfZ1hzfO8pCbh7fUUVsjjlcn4auZ2H040pM4N3NA/aePuvqAxASx5RmhSYqTvuyCPvGvwhU2G6Ii9oS0ApCF90unLCVx1M2fkLhnNqGyFT5AXJi6Fq1SvFOjon/EtkP/OSPHOeWkXYZ/ZygqNWB6/rvg8pq4XwxPpNBABnzaVuOf5V3eaeh2A617Av59AvEzVxxy4Jov1mrw9OpY5SBijup0JQnpBx7MHkLa7d5fkBaNpJcRdx5kpxa89PJCsBl+i1pk9GB9gwM6dHw62NhsQiGc+x8+j3mleMlMUfOm+s9lHVlmx/8oKdn+RQPeXOxngqoTq7Im6dNfOjRuHrzcEOyub9Vf2EjhqYVRlxsDnp/8c4fFbs+6LjY9PqhQDSU0npmqDNSA3PaxjfTYHpziCSsxzoIS5b2L78wLJiEXbY5HRVS7HadKqRMON9qZIC3cqsn33i2uHPVunYGayzh4xT282mcJWfr7O2tTcnv0BnO7XMrR6Qm3NaNSJmivQ32DCXp9ZwFAxgXoCVzzMB3HJF+HC9yxWnNaU7wrqMfj+j6mGOtn6sXeb7JnaMUf+V984H/T6zxGz3gMtW9f/BRzC2Q0oH371H89G8tSCHPsvwFQSwcI4HdM1mksAACjLQAAUEsDBBQACAAIAMeD0kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADHg9JAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c2W7bSBZ97v6KAh8aM0BEszYuaTmN2J2t42xtpzGYBQFFlmTGFKmQlC0H/VP9I/NNc6uKlEhtNuVNFsawXVxqPffchbcodX+ZDGN0LrI8SpN9A5uWgUQSpGGUDPaNcdHvuMYvz37sDkQ6EL3MR/00G/rFvsFkzSjcNxy373qMWh0vsFmH4VB0PK/POq7PbIz9oEdpYCA0yaOnSfreH4p85AfiODgVQ/8oDfxCDXxaFKOne3sXFxdmNZSZZoO9waBnTvLQQDDNJN83yoOn0F2j0QVV1Yll4b1/vDvS3XeiJC/8JBAGkksYR89+/KF7ESVheoEuorA4hQVbhBnoVESDU1gUt2FRe7LWCBAZiaCIzkUObWunatHFcGSoan4i7/+gj1A8XY+Bwug8CkW2b1gmxi62mWUTbqA0i0RSlLVwOdpe1U/3PBIXukN5pMaC+RVpGvd82Rf6809ELGKhJ7LAuiBQ2La+ZelrFtUF0QXTBdd1mG7OdFWm6zBdh1EDnUd51IvFvtH34xzAi5J+BoKbnufFZSzUfMoLs3XjJ7CmPPoOlakFYGq0Jc7WE/lnwx+zSpRri8S1UYts3HLQakgYwb3+mORGK6XTQQleHJPwFeu01wyqF36thfIatjCU+lV/CyPSdcucH1Gf32xAm93LErt7la50S/VA+amsW9KnEMNcKgz1EPck7zHioBy2AzTnCHtQOASBOiDMEeNwil1ky9JB1IEbDFHkIlkPU6S0g7vwjzmqMxtx6ExedUApEYaBGOIUYaVUDIEqIaWYoKSEQg3OEYdGcnhMZBfURsyGM+oiBnOUOulgqEihIZzD8ARRjKhsjB1EbGTL/jCTum67curQJUG2hWwsOwS1BpXW6gz1XUTlauwSrigZjYsSohL1YBhWcBXpaHoZqoNFmlk8baEaBvGHbuz3RAxO4liKEqFzP5YqoUbqp0mBpsqhrw0yf3QaBfmxKApolaOv/rl/5Bdi8hJq59XYqm6QJvnHLC0O03g8THKEgjS2qonCMa4dk9li0pjWbrD6DV67YdeOnaXjpnAHjXMB46dZXlX3w/CNrDGzDQDlhyS+PMiEfzZKo+YyunvK33TFOIijMPKTP4CtchSJC5q5H2mwKvfDCK1mkmbh8WUOHEaTf4oslerATK/244JcL/UtSpu3HJhb4EvtY17jhgdjXa66ZeuhxflURP5EzFY7yKRu107e5AdpPLukADj0R8U4U6EDmMdMrup5MoiFIokyuOCXg7NeOjnW7KC6r5PLEZxZega9gQIegXUgHDzmoCx7ulR15NSmtSxVx1I1rIpuUTi9jz2iaqiyp0tVC/irp1YulVbLxFY1TJQrm2YZTc1R7JdefpxExVF1UkTBWblUrBu8Hw97YsqhZp/4tvrs7s2RrHsmskTEJadBmON0nGsVrdE9FEE0hFN9o4TEl+L6DBPQV0MxyEQ18ViFZRowddeqs3XhsurqZZYO3yTnJ8CFuQl096pZdvMgi0aSc6gHjuBMzFgVRrkPfiSst5NKCEsPpL8AeAoJDajnuDhNMxV4gVWBUupeLIYQbKFC0SsZD0UWBVOgT1UEB5Mal/PGrllOXcKM0t5XsHfz4pkJEu6voCDy49GpryK/kmj+pcga4Kje3qVhNXQ5bixDRjSMEtXN0J/IWUF/vRxsYQFRM0gjmUXN2jLNbImMyaGJQ6k8ugRGq4C+H03E1NIDStF3YIXfWMxMFQow02cQjeZKX4tSM9XB6ygMRTKdrZ8Af5QUwFCN9HIROAkR1prCwQiWr2xCjbBaMlfKqD8vI2ubRNTBlZCs1jKCR41SRop2Wy2jIB0O/SREiQrh3iQFmB/A3ZiFFT7458lzsGyAA7jnS3WoRTAuqgrPdb9lbwuyVx5kKsTnxkZSlsHnQBc9XUwFbV1T0HWrlktRVYLqqIPv+ilZPyXKKUtX1oh/9NU5e7gazyMQ6xyUzzWMk6Uw+uthlCyZguRfhWLNH9RhhMdi7TKt0mXK8vaQxCWQs66WUVtGB+u4Lb4luk2u/WM0HMVREBULJmYyyqBDqQTlqg8MBBf3jb9ZT1D/70aTgHtXMPNgM2ZiomMZVZaxzC1Cejfc/JCBVx2kiR8vYemBZqm/wNBeC4b2NmToKnO+MZAdPIfkenJeYXc35+Zhxc3TJ8hqy83DreKm9mwPQ87DVeQMWpAz2FpyzmLVu2RnE++PimpNmHsL+P7axsv/ugV8nQ+RZgESrlDEtQCpkTCYt8LclAm+W2f69ZB/0Qb5FzuGPARnjtPIaHj3JIhgQRAv2wji5Y4IYmrs4dmTPRj0r9pA/2rXoCcmuR3z00QNZjiYgXIQxSFWyPUj6EBLJ7ACr98nHuc+FqwfiD5jNhbCJp7XF9T59wV0kWR+aH4dDfQkouTAD84GWToGGc8np/LCzwolcpSofJdyZSowOliSACj3LTZwyvgOBGYtE1irB8BfV0UvYYvoJdyW6GX+sa+j3OQ9Ry9LUH6xCmXRAmWxrSgvcYhbEDCGC2C/bmOyX++IyQZLjRe2Zu4sflzC/VeruD9owf3BtnK/ozzhFtB9sIDvmzZ0f7MrdLdMQu43RCEPGKIcPv4QpQmv2subzv6/f63ellmyg2WbxKXY5dRysONx75p7JQ4pt0qI7VXx7XW3szbcHcJW2/2hD/1+LgqVotEWnC4VDN7cFvlZUFOOFRIG/LHDOCUe4eBXGKWLuzy41S7P72nhFwsZX6VXynEAB5BPSnPWMHCq0k/+KM1/Xm/qluhs2exBNHdtwnJJE6zJSUzGrt2GNIdhJmdW7YfMdfAg9mO1FWj6pt828031OT64X+owk1bCc+8n8PptVeAVtQi8oq0NvBSQq43dbE8P83t/0njbJvR6uyOhF6vs0z3mpsUC9EdtoD/aGej5veam48tBmizPJL3V3voIClruFDTk80cE3QZnWNcOv2Bd/0zXj6FgINYv+Cox6ilUcpr2utIe2OuDn9YesHpjcNHEEX47TjAXA3k2y7J9wYt0vdlUb2yNtc6r52BietiqBRlVfLqBMNaZZkWmWOrC9PUg0J3Flw7PhBjJtz0/JCeZn+Ty0yS6ztXvhs0Df7Y1sHPTm4aAvKHmNi7FYJu2SxdeO3202Mdbg/10/08ZW4k1Nfm6x63HBbTYIuvSqfP8Gq/IbBvS14hbvuAFz/iuTeTybkcil0qrqEnuIFnXxOz9LjxHgpt1bxWxzcj6oQ1ZP+wYWbFJiLUmnXIH3P24C9zFpkumAD4geT+1Ie+nTd9s3lb2UpPadfJi5wFFcdJGFCc7Z0doIytr3ZckDqMsiMW/Pj1B7D8LIvncRiSfrwgaH4lEIJaXT1HM9VzuOCAVzipdoZ7juYQ6jHF+F9mU4zIQb0rok86PfF6QznC9dObD+uFmQf1dpG/ltwlgxwZZM4axU2aslgEvMaYmo4C7yz2CPdeuciq3vMf+QOF/qX8nS/Xv4OrkV+NTIlc+uD0uHeSMYEZcoAOrggXKPUxdTm2ZYXLwXYQOy7XwRGvhwRLH9bWdHn7dEj2U2ya4jqYFKlfXxCb832XOCeD3qGsD8sy2Fz/S/Ig0cVneemppVR76QCWkaRmYLMtcl9vS33T9sa7dU80YzOIq1V2atyar89ZXQNqaUZhTxSmON/6Aasu89bfNqL9mov/3QjdO9423RyjY9FzL5p5jWZxyjF2d3+hweEh0OebYdl2Qmvuio3cVHdMjID5O4L9FGfN2Ryq9TZOwd6Qsyz3FCkfRecyeYr1ciu2RSodIG1Z/fL+fz5LeDeoLH0o9EZMCly83/vRtnBY/H588//1EH6rmTUkVUN9oNr5BoEUsdlNJqe8kykUW9Wff36O+gsYyKlgr1z17a6vK7Db27h232tMH+1hPEjTi3zqce/VvLJHn1TfcPfsfUEsHCPrL4ih1CwAAfk8AAFBLAQIUABQACAAIAMeD0kDgd0zWaSwAAKMtAAAtAAAAAAAAAAAAAAAAAAAAAABjMGM5ZmYyOTU1YTFlNGZjZWY0NDYxZWU2Mjk5ZmUzN1x3YWdlbnJhZC5qcGdQSwECFAAUAAgACADHg9JARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAADELAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAMeD0kD6y+IodQsAAH5PAAAMAAAAAAAAAAAAAAAAACItAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDZAAAA0TgAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Version vom 18. Juni 2012, 15:31 Uhr
Tangentenviereck-Quadrat
Winkelhalbierende
Spielereien mit GeoGebra