Benutzer:Oz44oz: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Spielereien mit GeoGebra)
Zeile 1: Zeile 1:
 
 
== Tangentenviereck-Quadrat==
 
== Tangentenviereck-Quadrat==
  
Zeile 16: Zeile 15:
  
 
<ggb_applet width="1008" height="451"  version="4.0" ggbBase64="UEsDBBQACAAIACWE0kAAAAAAAAAAAAAAAAAtAAAAYzBjOWZmMjk1NWExZTRmY2VmNDQ2MWVlNjI5OWZlMzdcd2FnZW5yYWQuanBnnXpnVFNd1OZFVGyABVQQiAqKihRFOiQvIiAiRJBegoqoiID0TlREBCkiTWlRqtTQO4nUgAiRGnoILUAoCSQkhJTh/dbMN9+aNWvWzJy79o+77lnn3mfvffZ5nnMPd5Q7Axy/p2egB/DsAwCevQvgTgA6wKGDB/kOHjjEx8d3+PChI8eE+I8dPXpM5OQpQSFxUZCEuKiY2HkpOenzF69LioldUbl6XeHGrVu3QNJqWqo3NeUUb938dxCew4cPHzt67Cw//9mbF8Qu3Px/btxfwIlDwBwwzctzEdh3gof3BA+3HQDtfecBnv9owH9vPPt49x84yHfo8JGjex2qjwP7eHh59+3nPXBg//69pyF7z4H9Jw6cvHBD++Apk8d8Fz2Ebr6N/3FI8nZ5i7BpP1lK8Ynnu8NHTp85KyJ66bL0lavXbikpq6iqqevc0dXTv2tw76GZuYWllbWN41OnZ89fOL/08vbx9fMPCAx7H/4h4mNk1JeExKTklK/fUrOyc3Lz8n8WFFZUVlXX1NbVN7S2tXd0Yrq6fw8MDg2P4EbHxgmzc/MLi8Sl5RXK5haVtk1n7DD/xcUD8PL8j/a/xXViD9e+/ft59/P9i4tnn9+/HU7sP3DhxsGT2iZ8jz1OXbz59pDQ7fgf5S2HJRVNycJPPPuPnJa6RbhE+RfafyD7vwP27v8L2X8C+5+4xoFjvDx7weM9AUAAOvNK1psj/9VkpM1w1LXz8Fy7rK7QVZctNS7wJtYlahgsOcnnX3ydVVLMawD5Yyb2aO3s2e5OTxc1s2i/q7qVA15mecNVu+40+nY/F0DfjFt0aXdr0i0gHfYgTkJlSkUcvxh9HDtXXu0vIvZcnF2YUZUQgF2AC+B3no8i8k2iLeRPjZ0ukJjhXO6/GBJTaLPBWek6zApXYCB159hqAVwgz5UjPPdMeleOrrc1FkoPnqtn33gADfJ7tZ52aRNNzOsfqgHmElpASdAR29HQLrqVUvPN+VDSg2rH5cVS+PVhMiGiJ8xBI6dWQ4X1u+S8xY4X/d18nPEchVYgW/1pycRh4dPiCc66jkif2fF/VLG9jEfD13VWwkZ3EDomMBn3OXubPj/omtqYOcpB7c7b8jYfEUBipzQByojwKg+dcBbiAmu2NYO08c4SyzhTe+VAJVmvcb9P3hkGI1INm9JcIFMxJoZJhvPaA0qFX5J/fiiWFTIxO58VdQX4Xy0nu9prfCOyuEoVEmjYh/cVJtEcR4M41jnj91ad7UYbm2rLaoI+FVhcSSm6gdTCNYXSeUqq8jfPeDio1XlFh/SPeqoRkS+J8k36yrUFxbhTt8pDRre5QNH7z3d599OAd1C1X1jVYueZcJUm5OatiMX5FP6EN+BobVCceN2Khbvuj6pHDR+3cZCXfkGIqkmVP/21ajNEDwxSZxyh6b41OT3JXqPUTHse1rh7dmZTlSbubLo5u3DJ/7rb06gDN+//rh/9/rTSsUaNJaPfQl4OlaaIjjs0NdqckrpWDAQfv5eZ89orVt3CxNi4M2bi4bHpPC5AveLbCBeK+RK4zYISbZIzRXA0WUhIc+4cJIPlcN7Jaa3u7RszON58lekbkfeCslpW/kEAvCn/J7Q4ABJZct/ydpvfM2OkY9scw2c2YqcpyR4/3QD6m5pbtKye/+FypJKffeXVTeun+FpxfaWN6nm0KF93HmSXxIy6FBFls/+l8p9GyGFGhPmgK43/Vsv8vcZs9ow4pU+/2ryejP60Nj8l92UwCfOnENnIJ7meiZEKcRkKBQkyvle5M+fYRt60e+9fSZsglO2MlNIaHJY9f+E7Nr9ipU61CTA4oVWLTTX133zv/1U5l6w7x6sZ6LgIyQgRVmqyPFxhNaDLIV2R3FTqeYkWCNYo/AB5uiuVzyhBQVl+SexrEiJUp2tFBQsuwn1YNVaes0JzOujrjOP5t++MvUirMnBDCiw7pyHA8lo/HCtytuHR8br9m4fVOiGSD1a4gKASmy+4waw3wIU9vDu3kk7k8O5Y3kp9L98sp2I9Kd+ziUncaLu63L1spXSl2VveQHKcijhrtXL/M5YT6Y2/hpE8tjfvnRpAP1q2S1OUZk4WTWatbqZOWXquuyk0030k0OHegaAYd2q+lVtW5iIubqq296Kn9hFM6Y100EDDBYed6AVoOakqKSNvZdumo3DS2u56JMuQZbiq/8DlXsMp1M/2K1lR3/+z6NzTsJSfRZy8HOZUIVsSdBMhC69TPwP+xXmWZ2pi6XhvXuIaxU79uqu7mzDSd32eVRbb0czmo5LmU9RjetmD9zeIVTGN9JiwG3x86W8xIHmPiSjXyS2XM9CtyusIkuafsAuSCROZnLl8Y0mrheka5aD8hvimmhe4L21vAHHKWzvTtAR1yXPnnR9XTseHbluYgKZmHlGavK+rgiJepW/DxBheAYVrKJzE3fOcs/CF7LhgdssabtkeFNbE55otZYljZHKBjWu0u6EZn+DVO4GZG8Il6lpP7xR66/nkpTg/fiEr65odi+cEFJL9W7AF4DxUaH1lHVk6dqHmk2+P4VsPF85kyG3ONWujkEswW8onnYCqHnvPKUjQi2k7xPqNGQ7fzshgbMod7ZVAo9x2lZoH9r92ZzNvSLmunH0K6hou3EKHq2MnWOrjXuiNV2kLXKDU6As6fhLCA4sYL5Rbma9+/mgNBqUg2cYJnC0uoIS0WoMZUnLmX/RwASMpTmIuOUnw43qwAGQ2agBNmoQr2gt7cY5ygXgVw72xJHdw2mY1l9aFTHRvHPACXyDHpsyqpq0d37FUbZ3UfzNHWtGKW7ZXunQ5YdJ5lGzv0BqIey++OFob6BWyaK4huNtWiBicHAm2NCbXjhGeGZ/piY/lEQPO/ZxDBwvetyzzR3coh0oMYFOLPHwUnD4Ml+/2qckuZdez1HHRS4aFMK25lnylvuFdHaUKVnw0e6rZYzk6U6soKkcIFnFHfCRvHVFg+DhIeKqom/caew1/la/8rIhEOy+s4AcjFm/9sfCt8B846YI7dEP+JyQ/kNJ4jvHs21rG+FXLdeQDNla6YA1LsCmb1Erv9nJvuDrXNwL70cjWFtcuyDdpeZ/tNVHgwtcWuGqznVx7dLMPfb17KUS/fEXGt3GwoUFtvKzqX58ImZ76RyS1s8Q1a3kAZq/Shb6G9HPs169HCg35GFTH3LYuBTs/d6chJoHoA3zv+KAjDfLCJPRE4PsiXrea2t+t6GnND3DMWYm26fqC37bWd7iA/LiI/g7HIcnDHKG4qX61s13etfJ3VZkR7stjc0eiG3TKoWBtvNmyBcUf0fY3JI9gYaSnu5NW5bhbxIbCc5+xNMmYsSzOeLMOsZcLSKzgW/MZnGIItCTwksu9jObFOwv9R3WFLLU/m/Mbd4obGtWVI9hmlK8TFPHQ7BKHrDfgELLrlr9OJ/5pA3t6LCa3c2O9/Bfknxbo31Tmfm/kKUZzVkicffXIE+iUPTJFEV6VzYwO1WuWbLHBbdPD19zs6Xb6u9+4ACmLDJ1VwMc48Z+LzKk2yLjkzwU6cWPK7xFrBmyZUZlOsKoK6z4LjKD1o80LEa1XgvWz/aU5d3olOc0YWmlUmeYZLnDxWQIXgJFsaYZPYARdoYfHk/74V3b4hgoPai57yQ4hZJsb2MvnmDyTXMAmpUNCqpKMSsT5WTtbrdWGh1KRS1p8BauQaxRbQyOX2TNR9vT1DDTOiAtcX8tejVxVk8jhXK5MX8uarOtkNn9Y3hYlxgY/2LpVjDOFYzowYLsT1CMKgT6AAPob0vNvMMSJ0Cx7vXhwwSHVAIqPb6wEOcyrCm0ILlmAxQYGOju1CtEh2OnPXCAgbgdzbzzreA3ydSIya3QLdI4F2X2IKsjW4cTT82phKlygKuMtTZzT7G+kvu3SnTqwjHsKl9vY2SBhv4MQW0wpXHSwAbln2SaVtA2UNA2E7lhyrHvGIsqJFOzP4pcDhtO6rX79kTkvTy6pz5t27EV593Y3iI5TlT67IqAQUjT6KEPukUHWo/67P5KatZGHKup3A2X72OhpBz2xEztigiWB8m9p7s252Mam5F3mHCOReSJ9bnIgW0NDIRWV77OXHdYfLa/O2ZtXrYG6Irexvp1Kbit1PSozqiyXIuRlSu7civpa6x3Sgi1yDDeRXs9isGSuVSxEvrZ8LjfXF+6rca0w7ltg0jLGo6uE/3IrzhRXvLaRF3VFxc0p6Q0+bkZEC3oPU1fvPYqQ7012Y1C5AMRmvInhh+zNs1lR3tLVLBFYvj4x74OVdHm+f05MzItk99rSr7wp7pX5BD10DYwKGtQMQDJgtFW3piGrCY7mhhlZsVOxiyUgM3RL/uO4ctXJqw6rKv8GevHxO/iYWwSlw+9qnlddlW+iKa+hxV0TXSGeXv+J21zgfVgrLvlFWr751gUuEBIAQkhSkGoMnRJ2mkXdwKXdFJlNLoAzA+3eJHIYyJdKM2C58rQWLnCcM/g0zeLZGV/Ot6kv6EwCVSmR6ienvhRERp5m4LnABbwAF2iU37KhNatzxB8a1KBqNbLqou+ibyvGLcN0KfU1/mFtXIDW58A+7IwlHArWz2docHT5pTnNjhzzRisY/14BVtTjAkjVPYZ0wjbJ5QlsdoQvMljnMaHkou3uCCHUatYBLeNrLoFiRyiBa0utGPC7KabotKcnOG5QXZPJzNYmiXW6NePTbF38KeKrYgUucKDYer6ctg59iCn7mV6SNfmzcw6zTWx3EFLG00roaQi5EXltjieGukcX+RmhmLbAO77KhzekIjbuTo2h22rvPQ9vuuFECJF1lT3jpdJ7C7Nxl929TRUv+p514j9S/XuV6SmrQHyUd5ygDtq00SoDtSqzdZcL6IpxtLRIt/lb7BCfqtn7MPczMRaJvwf1LFfLSncQf8PFtbRVhYngiwxk4UvktpaIaKe0a2HPVh8XuP8arZ2woR/BESHZYJjGPzcchRCKt74pggMz8j+HjBJHR0wzqJFZMdXxaYQN6e6gNDjNVMHJvq5TEZfZjD6yJFkfpDEqN7tXHCoCPtHEUe899D9pXnCd6b08sqsbMCKv2FO39RT/ZepcHt99j7ddxaQA1NjTlBvBaLkNxvEVcFLX7Oxqr1tmfo2NXUfAc+E/+t6eV5xYL3s9UABqq+pD1RTnB8qBbov4S9wq7Wv8IefklVGkqGKNEvWN9wnEb3be7KFhQKUyLXl1qc/x6N4p+jdbSS2rWpQLjhUCxgoEyDQq3j3zkglYcYElpdny22msNQR4Y71sJYiYifiD03peElMgKxDRqq42Qts1S1gMY3v3cH5nIiJ/sYyCvgsTuYBASVsue+wOvv7JZFHsjbpY1fXmor8y925Uuenq+zq5iAqklE6EIB6Wv1uEELbOJDElsslIeRxH0M7WPa3NL/QlHJsxIdjtwAWiWKSxFx0vZr8drgqm5zDw7SiBJk5fs4GlO6t+umAibvvcT9D9uJc0kCBL9y+tLN5QftRtgmM1qdACWUXrMEEv8UNUIw3bauXxpEQVE1/rM+u7BSuCdR0B7h9DBfbeVkfuxaeitxZ88VloLiC8MzSWVfW88lkyKmAg2GXW4SCsNCM0ob2IC8j5Fd7F7PIPCb6+h8t/4XCS6urwVAXKRnjj2xT5I9g4MRBG+J5BZEcG+uUM6uoSaBx1btf7MCcpvza9MTCRc2PnEUd4ep/ot4s5H01aK2qPnavLGx5+n5GBvcHQRYbk9ZF0kuhalSI/3M0ct3iojggGqPoxywNEUe+HjNWmcYHb97qarFHiwQb4M6zA4kxPJH3G7RD9vBvIXNhxFoV0LCWp2y57heQ++qD7RddiPOez3uGzmrwDZYt0m1u1zV6jwWKQ2Zh+NKlPnr3fvOThw6qBWzvuyEWrEoL9nz9w7RXoPxo4CEH+uDOEHGHlhn4b2v1cdNLtVYDTcbcuzRkJtuDLTfhZRsUGxmbeQnnPy6ehciNToVRsuvvjlSCBNkqJ2MCdn1s3tdythkMvMmKvuPbXuE08d2L/8vomRuUT+xL4WmasSXxmF3LYOfO+Q3NTymJdnZYdU1BXPFx7Ju7gBMPx/oHt7p9/stdOBQZe5AIVkIfYPDkX1M3+YLCIvBzdzrc2gviZw5s/F2USU51MkA656O2DJU3L9QcrIygKjeYp7j3uoF6ZECFvCSLvdFO+NSOj1MUrJE4vvOSk3niR6243nrOfD0Q+gfAyXYIfVQox5+CKetiZFcqLO03d+EniD7o0eGhngxxxqVaklGU+4mMA7s7R2RZKWHiAbqoLZnq8ZewLWbEXJMRWlwhWkU42J5qyBgIQmhs7VBaUAMv4zjDUJU/Cl05HVSCaPaSxkiG2Zdtnhf/Oxupxzi/WYLS+M/T1/qODyyIXEBoI3lQZjoN+/1UaIVRlnvtEIs+iMS+v/AfMCgyBnzDHPlvJJ58HtTZJ3/5G2NWtZNPYi9NfaaCvHSHCMOFZWa1baAn7i8FFkiJn2DgRTnCoMNbeRymHKS7/Xt4UaxMp9DMKPsVq7l7GjzRrWn4IKSD4pMor2RyO/1bXeSYeWyMzPltvUR3rQX/6oI0ikh8ReOtqab445bJrakgqPCADfZ6P0wszP9ZIgGZ8Y+zUnjxMHNr15VQvO5zEE6uh6xO/8YVHtkJ2+30vr5XQU++nA4GxN0YqiiiKd18FEttiItpiSSxLflZyoyiFCxzzZ2LaRhzGBsYNZRRFmrrGbrN+eYR1LdsWUIL0fDGj7uiZC4KcXvvjia+ezk5onYwiCHbwCx+UqkE5pPhNxeXPsB5iOkACcxwHyAaWIVrqTz8j1SjeLNwpGMkR5QKZOEnO1Hgu6CRLhmXzSX53ZBNOubWT4uFZ6WXWX7X2EruampSu8uAE3emBx7rgg5COgNhGsg9hSuWDOwvN9Gru+bFtIRbXDirxxZMrNC9xAW2ff7eLuADlFo0RRpDmAl/XEKzDHzlPEhYcLfXjbPzjOlA8TYaGXTk10B1aXU8rF1hX9uACwfHrMjUVjN4fRo4XGmOt5PtDbUPt7k1HzXhgSxXUFhs+IU/7K5pWu7iUONzLPAymenXlQodEKdCPopbvq4pS6sm97Z4Bf9c2CWl9MSJf2dM5rwWDvTqvKdnerArKlm/PlEFRwPnb9fZ+13Y8KpDa6WsO2kyETa+tSN6eE0o4g/D0kdhvB2rS8osH8jYSg6dzqMXLtO4mLvDlmQPzOZ976ZUyt7vM4BH8SkYKe50NgSJzvVH7KadjCNZImrjpwKKRrrnFlOODf/g+nE/o9N+fPvNafavPhmQpt3uJvUHPjn/N2FuFtQrGExUmYON4yMajZxJPg1CWD6M/B74z4zwyFV/1Tc1vh59k5BFXRW83V3TTH1dY3CzD+pF2DpSI8xLksuE1rp5zq/Eqf/5itv7sKVSVf+CKe7poKdU48km58+kbtnd+n1tw+MaYqZQwYCbYKt07w/iavit55ja5JoEwGtys3H0R0iFtCS+SgAsk1UbZyOgoZEVdfbNHnYAPTWmziRLG6Md+lb5LcK1oA/ZZy+LULdCn/KeBtnt8yZylUJ3k8L4BfqKrSzMtf0/M0FGveNfW1mAdhE9hKh9WJaDNC2tcAGUMyQ04NbGDM4H0bP58tpGJaJuck9TEFTLk3BXbPMSIr2LRDApkpDy33kdZgSOpl7aa6z4bu7daiuVBSgLewCcbgnvYG1/3FhTb5sDa9o9cYNbyuUr35h/LRbqpPicMZnRqI5wwVr/nS4d7UehT1zIxAQR53iX17VgcLnmgG/LVcbJS/TUg+cZjaLF6kaFLMGjo8EcbJnOqz7QWxcslBJzx/ma7ZQdfzWs+0vBY+Hd0zhRWgwuEKxHgBPV3bDlIu9nN4NNkkmDyrrnD7ivEsMvAUuF83GOvnvqFEjJElwsk26AKEeQrWE6P+VPGmSfwYUbYAwf6nhQQJiWadEu0YOWIMaA3hfDF5/Vc4Jf5HoJCCONBLMKvw3TvvhjDBc7ABnXF4gV8/b2Ceeo4gieRrCN78aT4dPjTf52ZPvIBG7I51eKJWbT6feCa+nGrbTVkvry8a7Fs5uyK0weh3T+9b2F8lDMYB3LKZEfWqFXl6HXE9UzrgJzP7wofCIQhGoebC6WyTw4mxu5b2XZBCK7uZbjnAXfZ5o/LO+b8kGdDRp9qI6XcGJPmTEo6z05U8Ah9HJzv4Qh/0XOtNuWWawsL8lXpSa/rCXp2BRdoQhNZUcktAnXn1ksWa6EE/tFXfas/aTNygqC+Yrt7dOWamitfKu+2quJwXjzRsRGZnCShBWXFDjok8luzlou+ITn/Y3XGDVqvcqf1TI1r+U6AYKbnb1Vp0Op89N/GmNGl+TJGBmEZ8YQEtpjt2XY+tpQtnVXgBjkiyaie45fdhv3Gy5Onxlch3VCSbeZJRmVI/qsyyhGlScNNdr7b5fvwYO9XoXwkWPPjAufQCxVbrk7v1qcaqKrbTpphq7pmPmORyw2aaVDG3Gt9pluGq/zug7vdzOOtDUWgaFHh3/AcW5g2F+CxBP3ALtvW4gVZl35ueXy3WudQPXaeb9mJEks5xxiwJ9iXzPA00M6CR51gS9jDqn4wSf2cA4jxksh5YrIn1+yTEmiSoBJX25e+KmHs08xxOJN4sXZTaaGCda6xBspIIZXfQwT1NFZzgbFELnCvrYnhMDvxHC+k7AdRmX43x89w593p71VqAF2H/aE39XcEMx7OCkRFRTqX6hUhUjW7IJeua/jQcyJm/aKoRLO6Rne629ovVvcDuI1W1oqc/l/myab8uaML1CrOpVgL1m/BpZe5cR29dp1Yj9wJw2o/5SkKhYT4amHxY9aMsvhjO056Nd72Spz7N7TH/vIW3knfNRPTHLtXUdGifo6Q4DR4uI1C8QTUblszkHq52bblcGWbguB22g4ucVJ6I+uO7vOpTdao2i9J1W62hmWpv7ayP6wrSIXz3uWaRmxeBwRkw85v9TuGDhQ5rb2zBskWpYTXjKGf0+HYIdxf9RLkRFVa0W047nY/R+pRaPXMGR5CGqNpaiJtQWKsM2i7sF3WTd1WPKXVBS1tPVRsy7HRk2KZze2oLLngXFpYV/1T/aKL5VQ4K9aaydQ2pwDWXVbRVIeL7rSUmc0nXSGLzse6Qt++76vHnvSvNCZP1W5M9NbL1MvO7WImmYKBxGB7igC/ik/s525Z3JRzQw7cuD0OFobP9QjkC6+Gi9orTW72HEhTXpaXWpgnfn5Dg6xJ8KHv/X440n8rWr2i5keBy55Y9HlaWauXVAsvgEmGh1hRefFfggSGl0QdPlTBIwKFmL3rE2mj2VNSE0GZ+z3CBqXeZuZrUn6RbtkfNSaz3407l103kZ92KyYOx5m6dHNk/BN2Da2NTk9xgf5X57wn4LFP1OG/zDhPmWbVv+sz59CKFaOLLAihCP0xVKmuEd2Y8js+pmNOniwQ9ROqk36FCzgZ6c/B97cR+I1HxqeZBiOziher4qNLBW78JZJgWDIXaEOQ4/w9lb4pT9vNukTTTPUP7+W8WIiXnUrnAheIzEzgDDehs+UZf4ezQ7+nepZ3uUwfMBQ8tDTOtO8JEB7PTy/+fsjwisyb5oBj9VoUEqyDPGj5yZzskyWfXDEuP7Zg/qAJqfdrue4R28uE4WfwCcZ46JQ7FdK9ymrGT57PKNZqATjCi+D9I6XB0nNXX7mjvUsuVDU5EPT4jnCBf157sQecS0S3+Af1i/3zf4mqRJnkxoN74SyV18C5iddLcyTsD+EFywZQFEocxq63z6102Amt2v1K9Vb7xQWCJP/i/iZG/xgq8i56DTUVStXc2CMVp15V37UQv1NSxQW2xuDDaNwuumfS8ofk9ch6Yx3LVP9sgm7ufFwIgWgP3tq4Bdls1aGK/aCLBVlK5jBq28GHUZw/w7IL5g47fmnrCpxNhS5Mw3xgVJI06KMv1BF/w9Bu/e3slHy7AnLs2RiEoi0tyAiM87AXfpHRVf3u+5ezeUZfshq4gE8KpC8/66sYGxvWpOXVPGFQY+Ez3ntk52lc4WxTkOmgLFX+7OTy+O2bY8VvbZQ9p8zc1MARuUFbqneuT8n8Og1fczhu6MeyVFTqXKB2S5KX7YZX46svjwV3HzFCP1uMO+dL7ZYS2wrr3CPRzd8n0uCCo21Tj+04kpCRptSzMOKDKDwjZ7xoxU+Zp1N1bhJXnXXgH1RiGcmiwyS2w98hugq/ij5pD8c2fQnAh21Rf2lEoA4E5b4GnfTOTYN+MplIimkqQE85biJayiAzelUl59rNpr4tIqa8fbfgEQvraqAfSusNp3MaSmNcfMHUT7stS20fQBn+RyLjwSG/o/DtdS18YLwxxIYK/TC+tGvX8Aq52bvbBZ/mPQY5zsOSuSb3pyFqiXbkqqLdxscm83yG21Bze6ZrJ8TPLVpFpZ4qQaSVFn0VxdWOjLsWTU7d/9yODvjKBdJTN6FCjO05a9+yAVZXiS0dLs8cq5zg/Q4Oo1CLg3qhDpTFsprtgsWy3fKiJ6oHQ7ck2iY34feoG0cYEpi2F7UnuUDuSyN6qYj/fdohDcHQfGpxKbE8N9FPDXGEdRN/08E/YhHaVKOFqpDYY6exWiEyQ47hkjEmJ8zNfcNN3vB9Fy98rOt89mfCVWWvaXlcNhkXIYfcI9juKW7o6c9E9xk16VHRzbiIUPGQoHa8WxN79XTMduQ39EJO+4I2jXgdzqQ5zh4sY258DMXsC6ipMZrv3JPJspeleONgr/nKwNUr4FN/E9pQErXlfMFcgCQnxWHlJ0OM20aPYOdSvsgT4grQMG1KqRa9QbChD10Mn4Ohx5vS5mzgXQfQyzk9zAucJHPwyccU8bi2LfSvceu9CoHWf7kFjw7kG/Upcjhhm79eSnH3WTvP5xh6/sReKZCoXoLzQ1kPakAbhlwgG1ataZilMwsSnHb2Ei/S9LfgzAmYo/fx5Lu0n6qKhkeEXuDgyVUwl/XGKnb7dD7vgnu7I+Vg47UdImGkVuWDpu32OS4wJXOjqsGCc5AP4PChfyhRlY773f5SeaR7pEpWo11Z1rnARl8T3ta4cYFmIVZAFy7RtZZ+T+ICgjTkUWP6uKLhTys525dcABkxGd5J1tIHZ1UHX6U8Lkse73J+sptFCGXucZM95gYpCTooE0ZxbzNSaYdeWijYPZgzyc5SmtXhjFMhJmG04kmbkctRBsuSyHJU9ZBr8uIA4XIkhyT5FE6Lq7ZHZkhAhYK1hrgAHDXh5WotXNuiytFfet3aLN+GOFW1Zn5a1tA1mgtMP2NPcKTXOZpBf/NqnrwOynbpDERvw8LkE3ef17H/hGZD/OO+Y+eiKEsl+L7kjb4U+NRkb3q0F25ieaA2+HERuHlWKx7CvA5qDG90lPQKesp563Jj3+UhDqixNp3eA3KMG6l/+XtTOa84FtEi6jXFCOuDp8o4bZ1jr9/mqBHJSMtSlxam/DY4UlSdw3SfNtic+zkTyku73GCznCth9bV3KvwhuiLCtCxzwGdKqD/R/Yd44YJwAR82kB09IppeNhU8bRsgW1vfde1XUBgC9rI6ekvnlqBQz/7ysvGJ8vKURVJnkGUu685fyfoazsidqeo7fuKh6/6hWje1t8HDiycMd0mfVIwaXxfV1qkSRz3VlmlrLVIEyTz5b+J91RSww2oXYfDxiZfyZ51z0tZve/T9DaWsK/6iL9vlRwTLFzNwD1wiUs0rp3ZJyxXW2NffdjFUUK6Oo2s+/NUYCnkU+qxkd2EZI1krxdstTsKX7N83AqnYgT8f10TLn1Penoi9ETUNahr+jL/8Mf/Hkjo8oopWOUjYHNxQlLDRYS9q9br063qfDffMVMX1hX83mEcz7THrj7eli/Y8dLEh2TWrSaVDvX36KsW4R/ZPWnh1KvNLKL0mQI26r7JAzsxO8k8vNEIUNFGtPPQUSrU9VgynDngNo2ckaUqk2YoqWQl+Pt3qwZndMuQfPN6x5wYzPXU4/9Bm0RHPxccwS0oB/O8tfc5aD3IRwX5Ju7cFje7nAh0a+YbsiQ3i3kQIP8W4fS4NfmziD9kIuau4N8F+JLBdykolCbYb5IjdWlPkiiCtdDrd93ZQ5gWKyz+cXsp+UXYDPBs/ey7O2ew1fObeDZpDIBXOS4qwI081le6WPmb/wa8dV3Vvf8TxcexIPekf12aZavvoVvziZc78p9+IP4JtSvNc4KjSWFUJfFedTndWDMnUdZ9JMuAFvxdDzj0k9wyVzAb1CpnYHBcy0QVMm8tr0NXJ4+vTajMJG/oXPzxkWH7wb2xNhb2dTfMvlpNysQ51LnHaeR8g+YI//XPgDBXw6g3EfGoycSUUCRK+bDrQFIhcQALcRluGGR1OXVyoPodztnE+qrxej5XObNs5Qiy55CI6WP/4vQIbmzTBCm2C04psW0Wlt1EVyNeNWTWPpRDyDuuxGQYiTF5rhX+YJSvsJNZ2Rg1GtIw0+tR3Jn1bhARrJKyJah01snW6kOue6QxBMYhLfP9oHXA0FvtT/7trQqjKxB6j+u+vgP3xOf0V6jIyciMW64IPXDo0HQm1f6tfZMDnWu/vyHZzgZrnkxIRaIn3lnWpGFxVUIj73eTOkN+g9bvoQGXxs0FxuPjpygKBp2aXnvkHdhMvgnt7Gjdc17qwqhsYgj0uLNh8m78hZHcvkpWhi279CJ1VODTfWNJ0sJSlFSTbvAppjiOVYfpE1FnNbH215ajihpTxh6vxwRVk1LNpwf01k3TS2zUEUkpqtnc+ARx7MLkJ3jat0jhQM9EX4/UMLTfinnEQHh73QEuQAItwnbW/RrqfydSo2vwe3S23fgS46anOBWJ89Zy/qlY9YhlQQNvgj68euVOLqmU4K97SlOWdkTOtzTxTCzi5hHm7NpdGXHYdF/irzzpS19OThgb590mFc4G5daO9Zef+E3ED5hXpSbYL3pt0NEQe+q5zeJ/2/idKDo8gGffouZ6IhmL7Pc/afAsPIHZe4AJC4Y1wXyZk2A5uQ1UnhF7XJfpfQo81vN8bcJRTfXPUYxIazo9u9eQClQHSK0JcwGad1Ic6jgqGhEZsyBK3YmT6X8S2yLY2nZo1TuACh/aQpJhEKo+vIFA7QffrBMA5ru6lLtOkWMYnQv8s5NCU9km3phouYLAnnko/JbzlkCfRMVeLfnSMpYYKjZyy/yu7Tj+Y4p4iv9uGJLawXAKbVAiQyOAM6+tOcGoQbRy9+jtbZic6rlRm0stYbkmquKPUskNCoZw8lWmdbNvNt+5Kh8/1LqHYuxbSUWDJieWFtVsRBuuhJKMRVQ5iGvKdvgzzLustgNVkF94fWN9BueXnS5PXrIcKs8tNwuliA3iX8fcNebmKyhtpftDvvGXihY5EGGSsZArduDkzv80TSpaG5M8+TZWu/+aapefEBZKDPLXKMfspnerP8Qh9st/7BP0YN+Qp9lXUanDoBmklANymKowVWuw9Z6KLOMywepFc5OGp4tAFduNYcdaDEBbrIUUla7qyvnrXrnW1NIb/l5NHvAjKwbfOs0chl2deZWpWKV5ZOAz6qYWhtSBP4Vhqhf5+D6Dg/rRF9uTv3AGdzOyzkjhxTz4xXgfdYY1GjSCSZW1D+KVwzmYFkcV2uTpoSpNTXAB7GeZAJyfBIxMNRlP/XPd9PjS3I1ohO7AISnAbsS9h7YBS+MYb3U+xFOGprtcDlrHrExJPnpcOhJJnXgcwcQdNF8eX6W1b+hn9FYQWzJEpVTFEwXapXi4/f4Kpujzvy1S/cJrzutyPZ1uJOovyVnqe/uuCIhu/SDDM4yKrl2U7NWc8+hCrtZIr6nHtlli4s8GPsdcxmz93kl63k9UDvxjz1TYrqy7WNGwVy425Cccxa0ZZYmLemhIyNj6u2ZcfoPIHqJYfl/EnWLp5rBQJc6oDdXADjjdke9krpXRM3XzM+eboxcsFBpUtQaWCy7aF8c+MZSXi7PzaqfgZjUH22EV31sds5iCBEU8I0O8N3qvtuLsOTF4rjirFOKbQH8wZ+L2BrUt6+KTYdaxlRY8PGExM+iq1bsZQu+xancgB3bzMGopjJzfr7ekdVK0zgT4ErwZ1WSfLllTVzOZu0b3GIoj27fiTTRqCk6kBe3QvXZo5m3fSLvuLn4aoDszVg/KkjbirFY2+lmyR8U6AR6tyOba6ewWliKPVvghefHd5L6GUx7TjfPugxChxq+8PXmFwVOwq9CMumWkro70Ykge6FLFu9blD8PEHrMR7i/XqWYcTLgXbBs+sLrrT4ifmL2sdnkdgNoubVYzvPpteR7lTrm3q14KIqcH0oMVdpWLZWkRaduyN+EyAhGHgZH4yz3nSpSoHS66vBS/b73HLpik+N74dpWci4DHv5JEavHPD5Bm3AbU5qWMgU690QTuzcUhEdUjAMHzhHRfoeWb/86tW2U1jDUHMSDPkNrkTQVg6Mo5p8OUC1oohi9vbEm20/CNuQavSSicREZoKt/7W+jVKoSZYEE95JzpNabjf0D4+KqpCwbW5NepK4fF/ty//q30tjrHVHvT5uQ0bl6l1BpOQ/RGQgeplZ6WQNsceGjR8Ywuc5lsB99VANGOy48jCHStgMVQ/XSfIWdNg61pXT6JGrPFZsediPsjvFG2bTrOHo/1mL3Y6nnjr7Wyvc+QE3ROPcYHMxDgQWV1XBn7KFfOPB0Z1iW8Ohv/pD9EeUglget/rHc76A8+c5GXgID7kzg4sU4lKEVzvKjq/jdGxDhKR/bQdmWlx4YPrxIVNlD0+KPa7F+JnwcgVUyE/PVd0gD+NF/HHMgDSStqQd0Vlu3KBfdE/ucBYYSKCX+lpxLMeAy7waeHrO+OQIfi9COOQiN5Tn+u+nNmsRXdf/AD71t3SwuLXewdKod9k9y/jRUSwZ4/x+5BZSiNyD51arX+h/RYT/P7R8+dLB8FaS5GtuxvMQ7Y6nAG9viCvrUDHs9TssZ4yLzkiv3xChZXpGJyYuTb1UVIVI83SLkqmaIy3L2+Frir6ds9QWS29gcK1bYbeJtslxgGQpv7On5hoT2N4kvdpCYH+4jPzVVtwUuUZtiAo1zRbpU7945bsOb0hd3FUx1G79QfFPZvnMUXe2MHNZfvYODJnesJlxbSYC1A7NVe5wNsb8xxEjN9V0Yuu5uOopEvuojdsV56tKGuLGQi9/BhViPYxf83314xqYiuyV//+OfB/sktCpo/2WI7C6S9RVwHTfl2FI//rKdk9g3DH/htQSwcI1cb5FnUsAACtLQAAUEsDBBQACAAIACWE0kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAlhNJAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b63LbuBX+nX0KDH902plIwo0gmcrZiZ2bd7yXqbedTqd/IBKSEFOkSlK2nNmX6j5In6kHAClRN9uS41jN1BMZJHF4DvCd20da6X8/n6ToWhWlzrMTj3Sxh1QW54nORiferBp2Qu/719/1RyofqUEh0TAvJrI68biR1MmJF4TDMOIMd6JY8A4niepE0ZB3QskFITIeMBZ7CM1L/SrLf5ITVU5lrC7jsZrIizyWlTU8rqrpq17v5uam25jq5sWoNxoNuvMy8RAsMytPvPrgFahbuemGWXGKMen9/ccLp76js7KSWaw8ZLYw06+/e9G/0VmS36AbnVRj2DCm3ENjpUdj2JQvYFM9IzUFRKYqrvS1KuHe1qnddDWZelZMZmb+hTtC6WI/Hkr0tU5UceLhLiEhERwL6nsoL7TKqlqK1NZ6jZ7+tVY3TqE5srZgfVWepwNpdKHffkMUU4xemoG4gcIghJvC7hpmbqBu4G7wnQx3t3Mnyp0MdzKceehal3qQqhNvKNMSwNPZsADHLc7L6jZVdj31heW+yUvYU6k/gzDDAKZD2+CMX5qPgA/HNcqtTZKW1aqY7Wm0MQkWwofbpI/aKVsYpWTTJvV37FPcYdRt/EEb9VvYgin7z342LLK7trlu0Z0/zqDgX2WL/V6TK/06PVA5NrJ1+FRqUpqEYRHyIxP3BPmQHCKAMPcRiWAIKIJ0QMRH3IdTEiJhxgCxACY4YihERo4wZLPDD+EXD6wygXxQZq4GkJSIgCGOfIaITSqOIJWQTUxIUspAwveRDzcZ84QaFUwgLuCMhYjDGk1OBgQEGdwI52CeIkYQMzeTAFGBhNFHuMl1EZqlg0qKBEaCGIWQ1pDSLp1BPkTM7EbUcOlsOqtqiGrU40nSwFXl08VlEIeKtKx4rkKtFMQX/VQOVApN4tK4EqFrmZqUsJaGeVahRXK4a6NCTsc6Li9VVcFdJfokr+WFrNT8PUiXjW0rG+dZ+UuRV2d5OptkJUJxnuJmoXBMWsd0uZk8Za0J3p7wWxOidRxstZvDDJqVCuznRdmIyyQ5NxLL2gBQ/pylt6eFklfTXK9uo9+z/aavZnGqEy2zv0G0GisGF7RsP6ZgNe2HU9asJC+Sy9sSYhjN/6GKHIoVEd2o9ROCX2/dFFubimBtsTTZx6PVCbB1u2tKONPqeuEiOVfL3Y4Kk9utk/PyNE+XlywAZ3JazQpLHaA8FmZXb7JRqmyQ2IILfTm+GuTzSxcdzOn69XYKZ9itYDCywCOoDtSHjjmqx4EbrYxZ2kIKWxlsJXATbjpZzJOIWgk7DtxopSB+3dLqrbJmmwQ3ZnRpaxr2VjPHRr/p8rNMVxfNSaXjq3qrxN3w02wyUIsYWtVJvpTOfm8tyPpXqshUWsc0OHOWz0qXoq1wT1SsJ3DqJmpIpHHXX2EB7mqiRoVqFp5aWuYAs7O4Ha0bl62q90U+Oc+uf4VYWFtAv9essl/GhZ6amEMDaARXahlViS4l9JGkfZ9JQth6bPoFwFMZaCA9Z9U4LyzxgqoCo8m9VE2AbKHKhlc2m6hCxwugx5bBwaJm9brDbh1dBmWUDz5BuVv3ztKPML8jApFMp2NpiV8dZ/JWFSvYWG0/5kltuZYrU8MY0URDH+xADKKJnJtGCBoHJRTDCmgzuCNb0mZXmpbFxJByuCVgzBzdmtpgDoZ6rhalHmDSnyEs5Mp2lrlQQZ2+Ajpa2oSt6tS0Bx91kqhssV6ZQQBZN0ClmroNI+gSykW3uxUOpgCALQqtiHWuuddJw3UndVhXHJGX2CO8BE8btZdIeOxeivPJRGYJyiyLO88qqEAAvLdkFhJa9PwNFDfAATr0rT10PphVjcAbp7fWtuF920QWXnzjHeRmwz9Hbhi4YeFp/EBPtwtbaVzVOKpjDz67B2X3oGiWbLrZCgVyV9dK4m48L8Cta1C+cTDOt8Io74bRRMkCJLmJYs3y6wxbdoQ2ivBg7JomrpumGb8ckKTGcalqW2QbfnBXaKt/Ze6e0nVIPZmmOtbVRo2ZTwtQaHKg3vWph+DiiffH4UuE/+Stxl/vnsA8PSwwCXVsxo41m/kCkNqKaDB9mtj8uYDGOsozmW6J0lMXpXIjQgd7ROjgPjh3hOiuen44kqSOzgbJZbM5pPAeHp1nTXSOD4jOs6OKTkOqnik4z3YFZ7xHcMZHG5wLuvqUsbkK9y820FZRHmzA+3afJv/2CKJ1nSHdw49WXhlsVGHapeETRPrDoH+3D/TvvjXo4cCwlK+CfbyB/ft9sH//jWDflHdAnj8b8h/2Qf7DN4Y81BvxRZBfBQ0WOFpicqrThFjghhoUOOfEOI6GQxr5viSKD2M15FwQpQSNoqFiwT9vQEVWyKT7aTpyi9DZqYyvRkU+Axevv5AqK1lU1uMos++4bPOyROh0yyP/Q55itndh8gT+wtv8tdcT39tddCXZg64kx0JX1h/0OrYvfmW+sgXld7tQVnugrI4VZdsAj4AUJhvwftynRn/8Rmo0cHYW4vYP+7IccRVE+8Z9gdF//r3+7hQwIAH3GY2oT6KIs9pM+41m8z5TwBIZCX2GAxJEfvTAt5sBrV9uciqa2GQPfLl5aD4R/Oh3uge9Vy3ilsN2RM0WyDfCiO717vUveSWrjfcwtj/bygZuR5LWCbeSglboD3Kal3++Oxm39P76tmdhAI7i+34UBphFwg8wCenidSwLWRTgMKA8YJyYQG3n1RaNxHOVMwwicAwTUUQ5iUTUPFyzCEegJ2CgLgrovfpos0LBIoI5oyZfOHf6eNfHoI5wHgaCiiBYU/cshGavhvlhV8Mc7dEwR8faMDuWPh9Bxxxt4Hu+T8c8/0Y6JsHdgKx9meFrPuTQZ3zIOfvff8i5k4/8/px8hIqoTn360D+J/5+PPIqP0JqP/O74yPlWPkIP4yP0mflI2PWBdYTY9yEgCYRki45wjAkD8sApYUI8kI4Q2o2CFn3wW2wkDH2fUBYwcBl7IB0Ju1xgnwvBMA78EIsWG8GwRCoEXPWPjY3c1eJ+OKzFtdf47O2tw7us8exT/JVgC3/7YRd/03vwN33Ylwienr5ZHHeXzOUXCMz3cx5B4Hrtb53Zb3fW/0vh9X8BUEsHCBJ0UmggCQAAQjEAAFBLAQIUABQACAAIACWE0kDVxvkWdSwAAK0tAAAtAAAAAAAAAAAAAAAAAAAAAABjMGM5ZmYyOTU1YTFlNGZjZWY0NDYxZWU2Mjk5ZmUzN1x3YWdlbnJhZC5qcGdQSwECFAAUAAgACAAlhNJARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAADQLAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACWE0kASdFJoIAkAAEIxAAAMAAAAAAAAAAAAAAAAAC4tAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDZAAAAiDYAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1008" height="451"  version="4.0" ggbBase64="UEsDBBQACAAIACWE0kAAAAAAAAAAAAAAAAAtAAAAYzBjOWZmMjk1NWExZTRmY2VmNDQ2MWVlNjI5OWZlMzdcd2FnZW5yYWQuanBnnXpnVFNd1OZFVGyABVQQiAqKihRFOiQvIiAiRJBegoqoiID0TlREBCkiTWlRqtTQO4nUgAiRGnoILUAoCSQkhJTh/dbMN9+aNWvWzJy79o+77lnn3mfvffZ5nnMPd5Q7Axy/p2egB/DsAwCevQvgTgA6wKGDB/kOHjjEx8d3+PChI8eE+I8dPXpM5OQpQSFxUZCEuKiY2HkpOenzF69LioldUbl6XeHGrVu3QNJqWqo3NeUUb938dxCew4cPHzt67Cw//9mbF8Qu3Px/btxfwIlDwBwwzctzEdh3gof3BA+3HQDtfecBnv9owH9vPPt49x84yHfo8JGjex2qjwP7eHh59+3nPXBg//69pyF7z4H9Jw6cvHBD++Apk8d8Fz2Ebr6N/3FI8nZ5i7BpP1lK8Ynnu8NHTp85KyJ66bL0lavXbikpq6iqqevc0dXTv2tw76GZuYWllbWN41OnZ89fOL/08vbx9fMPCAx7H/4h4mNk1JeExKTklK/fUrOyc3Lz8n8WFFZUVlXX1NbVN7S2tXd0Yrq6fw8MDg2P4EbHxgmzc/MLi8Sl5RXK5haVtk1n7DD/xcUD8PL8j/a/xXViD9e+/ft59/P9i4tnn9+/HU7sP3DhxsGT2iZ8jz1OXbz59pDQ7fgf5S2HJRVNycJPPPuPnJa6RbhE+RfafyD7vwP27v8L2X8C+5+4xoFjvDx7weM9AUAAOvNK1psj/9VkpM1w1LXz8Fy7rK7QVZctNS7wJtYlahgsOcnnX3ydVVLMawD5Yyb2aO3s2e5OTxc1s2i/q7qVA15mecNVu+40+nY/F0DfjFt0aXdr0i0gHfYgTkJlSkUcvxh9HDtXXu0vIvZcnF2YUZUQgF2AC+B3no8i8k2iLeRPjZ0ukJjhXO6/GBJTaLPBWek6zApXYCB159hqAVwgz5UjPPdMeleOrrc1FkoPnqtn33gADfJ7tZ52aRNNzOsfqgHmElpASdAR29HQLrqVUvPN+VDSg2rH5cVS+PVhMiGiJ8xBI6dWQ4X1u+S8xY4X/d18nPEchVYgW/1pycRh4dPiCc66jkif2fF/VLG9jEfD13VWwkZ3EDomMBn3OXubPj/omtqYOcpB7c7b8jYfEUBipzQByojwKg+dcBbiAmu2NYO08c4SyzhTe+VAJVmvcb9P3hkGI1INm9JcIFMxJoZJhvPaA0qFX5J/fiiWFTIxO58VdQX4Xy0nu9prfCOyuEoVEmjYh/cVJtEcR4M41jnj91ad7UYbm2rLaoI+FVhcSSm6gdTCNYXSeUqq8jfPeDio1XlFh/SPeqoRkS+J8k36yrUFxbhTt8pDRre5QNH7z3d599OAd1C1X1jVYueZcJUm5OatiMX5FP6EN+BobVCceN2Khbvuj6pHDR+3cZCXfkGIqkmVP/21ajNEDwxSZxyh6b41OT3JXqPUTHse1rh7dmZTlSbubLo5u3DJ/7rb06gDN+//rh/9/rTSsUaNJaPfQl4OlaaIjjs0NdqckrpWDAQfv5eZ89orVt3CxNi4M2bi4bHpPC5AveLbCBeK+RK4zYISbZIzRXA0WUhIc+4cJIPlcN7Jaa3u7RszON58lekbkfeCslpW/kEAvCn/J7Q4ABJZct/ydpvfM2OkY9scw2c2YqcpyR4/3QD6m5pbtKye/+FypJKffeXVTeun+FpxfaWN6nm0KF93HmSXxIy6FBFls/+l8p9GyGFGhPmgK43/Vsv8vcZs9ow4pU+/2ryejP60Nj8l92UwCfOnENnIJ7meiZEKcRkKBQkyvle5M+fYRt60e+9fSZsglO2MlNIaHJY9f+E7Nr9ipU61CTA4oVWLTTX133zv/1U5l6w7x6sZ6LgIyQgRVmqyPFxhNaDLIV2R3FTqeYkWCNYo/AB5uiuVzyhBQVl+SexrEiJUp2tFBQsuwn1YNVaes0JzOujrjOP5t++MvUirMnBDCiw7pyHA8lo/HCtytuHR8br9m4fVOiGSD1a4gKASmy+4waw3wIU9vDu3kk7k8O5Y3kp9L98sp2I9Kd+ziUncaLu63L1spXSl2VveQHKcijhrtXL/M5YT6Y2/hpE8tjfvnRpAP1q2S1OUZk4WTWatbqZOWXquuyk0030k0OHegaAYd2q+lVtW5iIubqq296Kn9hFM6Y100EDDBYed6AVoOakqKSNvZdumo3DS2u56JMuQZbiq/8DlXsMp1M/2K1lR3/+z6NzTsJSfRZy8HOZUIVsSdBMhC69TPwP+xXmWZ2pi6XhvXuIaxU79uqu7mzDSd32eVRbb0czmo5LmU9RjetmD9zeIVTGN9JiwG3x86W8xIHmPiSjXyS2XM9CtyusIkuafsAuSCROZnLl8Y0mrheka5aD8hvimmhe4L21vAHHKWzvTtAR1yXPnnR9XTseHbluYgKZmHlGavK+rgiJepW/DxBheAYVrKJzE3fOcs/CF7LhgdssabtkeFNbE55otZYljZHKBjWu0u6EZn+DVO4GZG8Il6lpP7xR66/nkpTg/fiEr65odi+cEFJL9W7AF4DxUaH1lHVk6dqHmk2+P4VsPF85kyG3ONWujkEswW8onnYCqHnvPKUjQi2k7xPqNGQ7fzshgbMod7ZVAo9x2lZoH9r92ZzNvSLmunH0K6hou3EKHq2MnWOrjXuiNV2kLXKDU6As6fhLCA4sYL5Rbma9+/mgNBqUg2cYJnC0uoIS0WoMZUnLmX/RwASMpTmIuOUnw43qwAGQ2agBNmoQr2gt7cY5ygXgVw72xJHdw2mY1l9aFTHRvHPACXyDHpsyqpq0d37FUbZ3UfzNHWtGKW7ZXunQ5YdJ5lGzv0BqIey++OFob6BWyaK4huNtWiBicHAm2NCbXjhGeGZ/piY/lEQPO/ZxDBwvetyzzR3coh0oMYFOLPHwUnD4Ml+/2qckuZdez1HHRS4aFMK25lnylvuFdHaUKVnw0e6rZYzk6U6soKkcIFnFHfCRvHVFg+DhIeKqom/caew1/la/8rIhEOy+s4AcjFm/9sfCt8B846YI7dEP+JyQ/kNJ4jvHs21rG+FXLdeQDNla6YA1LsCmb1Erv9nJvuDrXNwL70cjWFtcuyDdpeZ/tNVHgwtcWuGqznVx7dLMPfb17KUS/fEXGt3GwoUFtvKzqX58ImZ76RyS1s8Q1a3kAZq/Shb6G9HPs169HCg35GFTH3LYuBTs/d6chJoHoA3zv+KAjDfLCJPRE4PsiXrea2t+t6GnND3DMWYm26fqC37bWd7iA/LiI/g7HIcnDHKG4qX61s13etfJ3VZkR7stjc0eiG3TKoWBtvNmyBcUf0fY3JI9gYaSnu5NW5bhbxIbCc5+xNMmYsSzOeLMOsZcLSKzgW/MZnGIItCTwksu9jObFOwv9R3WFLLU/m/Mbd4obGtWVI9hmlK8TFPHQ7BKHrDfgELLrlr9OJ/5pA3t6LCa3c2O9/Bfknxbo31Tmfm/kKUZzVkicffXIE+iUPTJFEV6VzYwO1WuWbLHBbdPD19zs6Xb6u9+4ACmLDJ1VwMc48Z+LzKk2yLjkzwU6cWPK7xFrBmyZUZlOsKoK6z4LjKD1o80LEa1XgvWz/aU5d3olOc0YWmlUmeYZLnDxWQIXgJFsaYZPYARdoYfHk/74V3b4hgoPai57yQ4hZJsb2MvnmDyTXMAmpUNCqpKMSsT5WTtbrdWGh1KRS1p8BauQaxRbQyOX2TNR9vT1DDTOiAtcX8tejVxVk8jhXK5MX8uarOtkNn9Y3hYlxgY/2LpVjDOFYzowYLsT1CMKgT6AAPob0vNvMMSJ0Cx7vXhwwSHVAIqPb6wEOcyrCm0ILlmAxQYGOju1CtEh2OnPXCAgbgdzbzzreA3ydSIya3QLdI4F2X2IKsjW4cTT82phKlygKuMtTZzT7G+kvu3SnTqwjHsKl9vY2SBhv4MQW0wpXHSwAbln2SaVtA2UNA2E7lhyrHvGIsqJFOzP4pcDhtO6rX79kTkvTy6pz5t27EV593Y3iI5TlT67IqAQUjT6KEPukUHWo/67P5KatZGHKup3A2X72OhpBz2xEztigiWB8m9p7s252Mam5F3mHCOReSJ9bnIgW0NDIRWV77OXHdYfLa/O2ZtXrYG6Irexvp1Kbit1PSozqiyXIuRlSu7civpa6x3Sgi1yDDeRXs9isGSuVSxEvrZ8LjfXF+6rca0w7ltg0jLGo6uE/3IrzhRXvLaRF3VFxc0p6Q0+bkZEC3oPU1fvPYqQ7012Y1C5AMRmvInhh+zNs1lR3tLVLBFYvj4x74OVdHm+f05MzItk99rSr7wp7pX5BD10DYwKGtQMQDJgtFW3piGrCY7mhhlZsVOxiyUgM3RL/uO4ctXJqw6rKv8GevHxO/iYWwSlw+9qnlddlW+iKa+hxV0TXSGeXv+J21zgfVgrLvlFWr751gUuEBIAQkhSkGoMnRJ2mkXdwKXdFJlNLoAzA+3eJHIYyJdKM2C58rQWLnCcM/g0zeLZGV/Ot6kv6EwCVSmR6ienvhRERp5m4LnABbwAF2iU37KhNatzxB8a1KBqNbLqou+ibyvGLcN0KfU1/mFtXIDW58A+7IwlHArWz2docHT5pTnNjhzzRisY/14BVtTjAkjVPYZ0wjbJ5QlsdoQvMljnMaHkou3uCCHUatYBLeNrLoFiRyiBa0utGPC7KabotKcnOG5QXZPJzNYmiXW6NePTbF38KeKrYgUucKDYer6ctg59iCn7mV6SNfmzcw6zTWx3EFLG00roaQi5EXltjieGukcX+RmhmLbAO77KhzekIjbuTo2h22rvPQ9vuuFECJF1lT3jpdJ7C7Nxl929TRUv+p514j9S/XuV6SmrQHyUd5ygDtq00SoDtSqzdZcL6IpxtLRIt/lb7BCfqtn7MPczMRaJvwf1LFfLSncQf8PFtbRVhYngiwxk4UvktpaIaKe0a2HPVh8XuP8arZ2woR/BESHZYJjGPzcchRCKt74pggMz8j+HjBJHR0wzqJFZMdXxaYQN6e6gNDjNVMHJvq5TEZfZjD6yJFkfpDEqN7tXHCoCPtHEUe899D9pXnCd6b08sqsbMCKv2FO39RT/ZepcHt99j7ddxaQA1NjTlBvBaLkNxvEVcFLX7Oxqr1tmfo2NXUfAc+E/+t6eV5xYL3s9UABqq+pD1RTnB8qBbov4S9wq7Wv8IefklVGkqGKNEvWN9wnEb3be7KFhQKUyLXl1qc/x6N4p+jdbSS2rWpQLjhUCxgoEyDQq3j3zkglYcYElpdny22msNQR4Y71sJYiYifiD03peElMgKxDRqq42Qts1S1gMY3v3cH5nIiJ/sYyCvgsTuYBASVsue+wOvv7JZFHsjbpY1fXmor8y925Uuenq+zq5iAqklE6EIB6Wv1uEELbOJDElsslIeRxH0M7WPa3NL/QlHJsxIdjtwAWiWKSxFx0vZr8drgqm5zDw7SiBJk5fs4GlO6t+umAibvvcT9D9uJc0kCBL9y+tLN5QftRtgmM1qdACWUXrMEEv8UNUIw3bauXxpEQVE1/rM+u7BSuCdR0B7h9DBfbeVkfuxaeitxZ88VloLiC8MzSWVfW88lkyKmAg2GXW4SCsNCM0ob2IC8j5Fd7F7PIPCb6+h8t/4XCS6urwVAXKRnjj2xT5I9g4MRBG+J5BZEcG+uUM6uoSaBx1btf7MCcpvza9MTCRc2PnEUd4ep/ot4s5H01aK2qPnavLGx5+n5GBvcHQRYbk9ZF0kuhalSI/3M0ct3iojggGqPoxywNEUe+HjNWmcYHb97qarFHiwQb4M6zA4kxPJH3G7RD9vBvIXNhxFoV0LCWp2y57heQ++qD7RddiPOez3uGzmrwDZYt0m1u1zV6jwWKQ2Zh+NKlPnr3fvOThw6qBWzvuyEWrEoL9nz9w7RXoPxo4CEH+uDOEHGHlhn4b2v1cdNLtVYDTcbcuzRkJtuDLTfhZRsUGxmbeQnnPy6ehciNToVRsuvvjlSCBNkqJ2MCdn1s3tdythkMvMmKvuPbXuE08d2L/8vomRuUT+xL4WmasSXxmF3LYOfO+Q3NTymJdnZYdU1BXPFx7Ju7gBMPx/oHt7p9/stdOBQZe5AIVkIfYPDkX1M3+YLCIvBzdzrc2gviZw5s/F2USU51MkA656O2DJU3L9QcrIygKjeYp7j3uoF6ZECFvCSLvdFO+NSOj1MUrJE4vvOSk3niR6243nrOfD0Q+gfAyXYIfVQox5+CKetiZFcqLO03d+EniD7o0eGhngxxxqVaklGU+4mMA7s7R2RZKWHiAbqoLZnq8ZewLWbEXJMRWlwhWkU42J5qyBgIQmhs7VBaUAMv4zjDUJU/Cl05HVSCaPaSxkiG2Zdtnhf/Oxupxzi/WYLS+M/T1/qODyyIXEBoI3lQZjoN+/1UaIVRlnvtEIs+iMS+v/AfMCgyBnzDHPlvJJ58HtTZJ3/5G2NWtZNPYi9NfaaCvHSHCMOFZWa1baAn7i8FFkiJn2DgRTnCoMNbeRymHKS7/Xt4UaxMp9DMKPsVq7l7GjzRrWn4IKSD4pMor2RyO/1bXeSYeWyMzPltvUR3rQX/6oI0ikh8ReOtqab445bJrakgqPCADfZ6P0wszP9ZIgGZ8Y+zUnjxMHNr15VQvO5zEE6uh6xO/8YVHtkJ2+30vr5XQU++nA4GxN0YqiiiKd18FEttiItpiSSxLflZyoyiFCxzzZ2LaRhzGBsYNZRRFmrrGbrN+eYR1LdsWUIL0fDGj7uiZC4KcXvvjia+ezk5onYwiCHbwCx+UqkE5pPhNxeXPsB5iOkACcxwHyAaWIVrqTz8j1SjeLNwpGMkR5QKZOEnO1Hgu6CRLhmXzSX53ZBNOubWT4uFZ6WXWX7X2EruampSu8uAE3emBx7rgg5COgNhGsg9hSuWDOwvN9Gru+bFtIRbXDirxxZMrNC9xAW2ff7eLuADlFo0RRpDmAl/XEKzDHzlPEhYcLfXjbPzjOlA8TYaGXTk10B1aXU8rF1hX9uACwfHrMjUVjN4fRo4XGmOt5PtDbUPt7k1HzXhgSxXUFhs+IU/7K5pWu7iUONzLPAymenXlQodEKdCPopbvq4pS6sm97Z4Bf9c2CWl9MSJf2dM5rwWDvTqvKdnerArKlm/PlEFRwPnb9fZ+13Y8KpDa6WsO2kyETa+tSN6eE0o4g/D0kdhvB2rS8osH8jYSg6dzqMXLtO4mLvDlmQPzOZ976ZUyt7vM4BH8SkYKe50NgSJzvVH7KadjCNZImrjpwKKRrrnFlOODf/g+nE/o9N+fPvNafavPhmQpt3uJvUHPjn/N2FuFtQrGExUmYON4yMajZxJPg1CWD6M/B74z4zwyFV/1Tc1vh59k5BFXRW83V3TTH1dY3CzD+pF2DpSI8xLksuE1rp5zq/Eqf/5itv7sKVSVf+CKe7poKdU48km58+kbtnd+n1tw+MaYqZQwYCbYKt07w/iavit55ja5JoEwGtys3H0R0iFtCS+SgAsk1UbZyOgoZEVdfbNHnYAPTWmziRLG6Md+lb5LcK1oA/ZZy+LULdCn/KeBtnt8yZylUJ3k8L4BfqKrSzMtf0/M0FGveNfW1mAdhE9hKh9WJaDNC2tcAGUMyQ04NbGDM4H0bP58tpGJaJuck9TEFTLk3BXbPMSIr2LRDApkpDy33kdZgSOpl7aa6z4bu7daiuVBSgLewCcbgnvYG1/3FhTb5sDa9o9cYNbyuUr35h/LRbqpPicMZnRqI5wwVr/nS4d7UehT1zIxAQR53iX17VgcLnmgG/LVcbJS/TUg+cZjaLF6kaFLMGjo8EcbJnOqz7QWxcslBJzx/ma7ZQdfzWs+0vBY+Hd0zhRWgwuEKxHgBPV3bDlIu9nN4NNkkmDyrrnD7ivEsMvAUuF83GOvnvqFEjJElwsk26AKEeQrWE6P+VPGmSfwYUbYAwf6nhQQJiWadEu0YOWIMaA3hfDF5/Vc4Jf5HoJCCONBLMKvw3TvvhjDBc7ABnXF4gV8/b2Ceeo4gieRrCN78aT4dPjTf52ZPvIBG7I51eKJWbT6feCa+nGrbTVkvry8a7Fs5uyK0weh3T+9b2F8lDMYB3LKZEfWqFXl6HXE9UzrgJzP7wofCIQhGoebC6WyTw4mxu5b2XZBCK7uZbjnAXfZ5o/LO+b8kGdDRp9qI6XcGJPmTEo6z05U8Ah9HJzv4Qh/0XOtNuWWawsL8lXpSa/rCXp2BRdoQhNZUcktAnXn1ksWa6EE/tFXfas/aTNygqC+Yrt7dOWamitfKu+2quJwXjzRsRGZnCShBWXFDjok8luzlou+ITn/Y3XGDVqvcqf1TI1r+U6AYKbnb1Vp0Op89N/GmNGl+TJGBmEZ8YQEtpjt2XY+tpQtnVXgBjkiyaie45fdhv3Gy5Onxlch3VCSbeZJRmVI/qsyyhGlScNNdr7b5fvwYO9XoXwkWPPjAufQCxVbrk7v1qcaqKrbTpphq7pmPmORyw2aaVDG3Gt9pluGq/zug7vdzOOtDUWgaFHh3/AcW5g2F+CxBP3ALtvW4gVZl35ueXy3WudQPXaeb9mJEks5xxiwJ9iXzPA00M6CR51gS9jDqn4wSf2cA4jxksh5YrIn1+yTEmiSoBJX25e+KmHs08xxOJN4sXZTaaGCda6xBspIIZXfQwT1NFZzgbFELnCvrYnhMDvxHC+k7AdRmX43x89w593p71VqAF2H/aE39XcEMx7OCkRFRTqX6hUhUjW7IJeua/jQcyJm/aKoRLO6Rne629ovVvcDuI1W1oqc/l/myab8uaML1CrOpVgL1m/BpZe5cR29dp1Yj9wJw2o/5SkKhYT4amHxY9aMsvhjO056Nd72Spz7N7TH/vIW3knfNRPTHLtXUdGifo6Q4DR4uI1C8QTUblszkHq52bblcGWbguB22g4ucVJ6I+uO7vOpTdao2i9J1W62hmWpv7ayP6wrSIXz3uWaRmxeBwRkw85v9TuGDhQ5rb2zBskWpYTXjKGf0+HYIdxf9RLkRFVa0W047nY/R+pRaPXMGR5CGqNpaiJtQWKsM2i7sF3WTd1WPKXVBS1tPVRsy7HRk2KZze2oLLngXFpYV/1T/aKL5VQ4K9aaydQ2pwDWXVbRVIeL7rSUmc0nXSGLzse6Qt++76vHnvSvNCZP1W5M9NbL1MvO7WImmYKBxGB7igC/ik/s525Z3JRzQw7cuD0OFobP9QjkC6+Gi9orTW72HEhTXpaXWpgnfn5Dg6xJ8KHv/X440n8rWr2i5keBy55Y9HlaWauXVAsvgEmGh1hRefFfggSGl0QdPlTBIwKFmL3rE2mj2VNSE0GZ+z3CBqXeZuZrUn6RbtkfNSaz3407l103kZ92KyYOx5m6dHNk/BN2Da2NTk9xgf5X57wn4LFP1OG/zDhPmWbVv+sz59CKFaOLLAihCP0xVKmuEd2Y8js+pmNOniwQ9ROqk36FCzgZ6c/B97cR+I1HxqeZBiOziher4qNLBW78JZJgWDIXaEOQ4/w9lb4pT9vNukTTTPUP7+W8WIiXnUrnAheIzEzgDDehs+UZf4ezQ7+nepZ3uUwfMBQ8tDTOtO8JEB7PTy/+fsjwisyb5oBj9VoUEqyDPGj5yZzskyWfXDEuP7Zg/qAJqfdrue4R28uE4WfwCcZ46JQ7FdK9ymrGT57PKNZqATjCi+D9I6XB0nNXX7mjvUsuVDU5EPT4jnCBf157sQecS0S3+Af1i/3zf4mqRJnkxoN74SyV18C5iddLcyTsD+EFywZQFEocxq63z6102Amt2v1K9Vb7xQWCJP/i/iZG/xgq8i56DTUVStXc2CMVp15V37UQv1NSxQW2xuDDaNwuumfS8ofk9ch6Yx3LVP9sgm7ufFwIgWgP3tq4Bdls1aGK/aCLBVlK5jBq28GHUZw/w7IL5g47fmnrCpxNhS5Mw3xgVJI06KMv1BF/w9Bu/e3slHy7AnLs2RiEoi0tyAiM87AXfpHRVf3u+5ezeUZfshq4gE8KpC8/66sYGxvWpOXVPGFQY+Ez3ntk52lc4WxTkOmgLFX+7OTy+O2bY8VvbZQ9p8zc1MARuUFbqneuT8n8Og1fczhu6MeyVFTqXKB2S5KX7YZX46svjwV3HzFCP1uMO+dL7ZYS2wrr3CPRzd8n0uCCo21Tj+04kpCRptSzMOKDKDwjZ7xoxU+Zp1N1bhJXnXXgH1RiGcmiwyS2w98hugq/ij5pD8c2fQnAh21Rf2lEoA4E5b4GnfTOTYN+MplIimkqQE85biJayiAzelUl59rNpr4tIqa8fbfgEQvraqAfSusNp3MaSmNcfMHUT7stS20fQBn+RyLjwSG/o/DtdS18YLwxxIYK/TC+tGvX8Aq52bvbBZ/mPQY5zsOSuSb3pyFqiXbkqqLdxscm83yG21Bze6ZrJ8TPLVpFpZ4qQaSVFn0VxdWOjLsWTU7d/9yODvjKBdJTN6FCjO05a9+yAVZXiS0dLs8cq5zg/Q4Oo1CLg3qhDpTFsprtgsWy3fKiJ6oHQ7ck2iY34feoG0cYEpi2F7UnuUDuSyN6qYj/fdohDcHQfGpxKbE8N9FPDXGEdRN/08E/YhHaVKOFqpDYY6exWiEyQ47hkjEmJ8zNfcNN3vB9Fy98rOt89mfCVWWvaXlcNhkXIYfcI9juKW7o6c9E9xk16VHRzbiIUPGQoHa8WxN79XTMduQ39EJO+4I2jXgdzqQ5zh4sY258DMXsC6ipMZrv3JPJspeleONgr/nKwNUr4FN/E9pQErXlfMFcgCQnxWHlJ0OM20aPYOdSvsgT4grQMG1KqRa9QbChD10Mn4Ohx5vS5mzgXQfQyzk9zAucJHPwyccU8bi2LfSvceu9CoHWf7kFjw7kG/Upcjhhm79eSnH3WTvP5xh6/sReKZCoXoLzQ1kPakAbhlwgG1ataZilMwsSnHb2Ei/S9LfgzAmYo/fx5Lu0n6qKhkeEXuDgyVUwl/XGKnb7dD7vgnu7I+Vg47UdImGkVuWDpu32OS4wJXOjqsGCc5AP4PChfyhRlY773f5SeaR7pEpWo11Z1rnARl8T3ta4cYFmIVZAFy7RtZZ+T+ICgjTkUWP6uKLhTys525dcABkxGd5J1tIHZ1UHX6U8Lkse73J+sptFCGXucZM95gYpCTooE0ZxbzNSaYdeWijYPZgzyc5SmtXhjFMhJmG04kmbkctRBsuSyHJU9ZBr8uIA4XIkhyT5FE6Lq7ZHZkhAhYK1hrgAHDXh5WotXNuiytFfet3aLN+GOFW1Zn5a1tA1mgtMP2NPcKTXOZpBf/NqnrwOynbpDERvw8LkE3ef17H/hGZD/OO+Y+eiKEsl+L7kjb4U+NRkb3q0F25ieaA2+HERuHlWKx7CvA5qDG90lPQKesp563Jj3+UhDqixNp3eA3KMG6l/+XtTOa84FtEi6jXFCOuDp8o4bZ1jr9/mqBHJSMtSlxam/DY4UlSdw3SfNtic+zkTyku73GCznCth9bV3KvwhuiLCtCxzwGdKqD/R/Yd44YJwAR82kB09IppeNhU8bRsgW1vfde1XUBgC9rI6ekvnlqBQz/7ysvGJ8vKURVJnkGUu685fyfoazsidqeo7fuKh6/6hWje1t8HDiycMd0mfVIwaXxfV1qkSRz3VlmlrLVIEyTz5b+J91RSww2oXYfDxiZfyZ51z0tZve/T9DaWsK/6iL9vlRwTLFzNwD1wiUs0rp3ZJyxXW2NffdjFUUK6Oo2s+/NUYCnkU+qxkd2EZI1krxdstTsKX7N83AqnYgT8f10TLn1Penoi9ETUNahr+jL/8Mf/Hkjo8oopWOUjYHNxQlLDRYS9q9br063qfDffMVMX1hX83mEcz7THrj7eli/Y8dLEh2TWrSaVDvX36KsW4R/ZPWnh1KvNLKL0mQI26r7JAzsxO8k8vNEIUNFGtPPQUSrU9VgynDngNo2ckaUqk2YoqWQl+Pt3qwZndMuQfPN6x5wYzPXU4/9Bm0RHPxccwS0oB/O8tfc5aD3IRwX5Ju7cFje7nAh0a+YbsiQ3i3kQIP8W4fS4NfmziD9kIuau4N8F+JLBdykolCbYb5IjdWlPkiiCtdDrd93ZQ5gWKyz+cXsp+UXYDPBs/ey7O2ew1fObeDZpDIBXOS4qwI081le6WPmb/wa8dV3Vvf8TxcexIPekf12aZavvoVvziZc78p9+IP4JtSvNc4KjSWFUJfFedTndWDMnUdZ9JMuAFvxdDzj0k9wyVzAb1CpnYHBcy0QVMm8tr0NXJ4+vTajMJG/oXPzxkWH7wb2xNhb2dTfMvlpNysQ51LnHaeR8g+YI//XPgDBXw6g3EfGoycSUUCRK+bDrQFIhcQALcRluGGR1OXVyoPodztnE+qrxej5XObNs5Qiy55CI6WP/4vQIbmzTBCm2C04psW0Wlt1EVyNeNWTWPpRDyDuuxGQYiTF5rhX+YJSvsJNZ2Rg1GtIw0+tR3Jn1bhARrJKyJah01snW6kOue6QxBMYhLfP9oHXA0FvtT/7trQqjKxB6j+u+vgP3xOf0V6jIyciMW64IPXDo0HQm1f6tfZMDnWu/vyHZzgZrnkxIRaIn3lnWpGFxVUIj73eTOkN+g9bvoQGXxs0FxuPjpygKBp2aXnvkHdhMvgnt7Gjdc17qwqhsYgj0uLNh8m78hZHcvkpWhi279CJ1VODTfWNJ0sJSlFSTbvAppjiOVYfpE1FnNbH215ajihpTxh6vxwRVk1LNpwf01k3TS2zUEUkpqtnc+ARx7MLkJ3jat0jhQM9EX4/UMLTfinnEQHh73QEuQAItwnbW/RrqfydSo2vwe3S23fgS46anOBWJ89Zy/qlY9YhlQQNvgj68euVOLqmU4K97SlOWdkTOtzTxTCzi5hHm7NpdGXHYdF/irzzpS19OThgb590mFc4G5daO9Zef+E3ED5hXpSbYL3pt0NEQe+q5zeJ/2/idKDo8gGffouZ6IhmL7Pc/afAsPIHZe4AJC4Y1wXyZk2A5uQ1UnhF7XJfpfQo81vN8bcJRTfXPUYxIazo9u9eQClQHSK0JcwGad1Ic6jgqGhEZsyBK3YmT6X8S2yLY2nZo1TuACh/aQpJhEKo+vIFA7QffrBMA5ru6lLtOkWMYnQv8s5NCU9km3phouYLAnnko/JbzlkCfRMVeLfnSMpYYKjZyy/yu7Tj+Y4p4iv9uGJLawXAKbVAiQyOAM6+tOcGoQbRy9+jtbZic6rlRm0stYbkmquKPUskNCoZw8lWmdbNvNt+5Kh8/1LqHYuxbSUWDJieWFtVsRBuuhJKMRVQ5iGvKdvgzzLustgNVkF94fWN9BueXnS5PXrIcKs8tNwuliA3iX8fcNebmKyhtpftDvvGXihY5EGGSsZArduDkzv80TSpaG5M8+TZWu/+aapefEBZKDPLXKMfspnerP8Qh9st/7BP0YN+Qp9lXUanDoBmklANymKowVWuw9Z6KLOMywepFc5OGp4tAFduNYcdaDEBbrIUUla7qyvnrXrnW1NIb/l5NHvAjKwbfOs0chl2deZWpWKV5ZOAz6qYWhtSBP4Vhqhf5+D6Dg/rRF9uTv3AGdzOyzkjhxTz4xXgfdYY1GjSCSZW1D+KVwzmYFkcV2uTpoSpNTXAB7GeZAJyfBIxMNRlP/XPd9PjS3I1ohO7AISnAbsS9h7YBS+MYb3U+xFOGprtcDlrHrExJPnpcOhJJnXgcwcQdNF8eX6W1b+hn9FYQWzJEpVTFEwXapXi4/f4Kpujzvy1S/cJrzutyPZ1uJOovyVnqe/uuCIhu/SDDM4yKrl2U7NWc8+hCrtZIr6nHtlli4s8GPsdcxmz93kl63k9UDvxjz1TYrqy7WNGwVy425Cccxa0ZZYmLemhIyNj6u2ZcfoPIHqJYfl/EnWLp5rBQJc6oDdXADjjdke9krpXRM3XzM+eboxcsFBpUtQaWCy7aF8c+MZSXi7PzaqfgZjUH22EV31sds5iCBEU8I0O8N3qvtuLsOTF4rjirFOKbQH8wZ+L2BrUt6+KTYdaxlRY8PGExM+iq1bsZQu+xancgB3bzMGopjJzfr7ekdVK0zgT4ErwZ1WSfLllTVzOZu0b3GIoj27fiTTRqCk6kBe3QvXZo5m3fSLvuLn4aoDszVg/KkjbirFY2+lmyR8U6AR6tyOba6ewWliKPVvghefHd5L6GUx7TjfPugxChxq+8PXmFwVOwq9CMumWkro70Ykge6FLFu9blD8PEHrMR7i/XqWYcTLgXbBs+sLrrT4ifmL2sdnkdgNoubVYzvPpteR7lTrm3q14KIqcH0oMVdpWLZWkRaduyN+EyAhGHgZH4yz3nSpSoHS66vBS/b73HLpik+N74dpWci4DHv5JEavHPD5Bm3AbU5qWMgU690QTuzcUhEdUjAMHzhHRfoeWb/86tW2U1jDUHMSDPkNrkTQVg6Mo5p8OUC1oohi9vbEm20/CNuQavSSicREZoKt/7W+jVKoSZYEE95JzpNabjf0D4+KqpCwbW5NepK4fF/ty//q30tjrHVHvT5uQ0bl6l1BpOQ/RGQgeplZ6WQNsceGjR8Ywuc5lsB99VANGOy48jCHStgMVQ/XSfIWdNg61pXT6JGrPFZsediPsjvFG2bTrOHo/1mL3Y6nnjr7Wyvc+QE3ROPcYHMxDgQWV1XBn7KFfOPB0Z1iW8Ohv/pD9EeUglget/rHc76A8+c5GXgID7kzg4sU4lKEVzvKjq/jdGxDhKR/bQdmWlx4YPrxIVNlD0+KPa7F+JnwcgVUyE/PVd0gD+NF/HHMgDSStqQd0Vlu3KBfdE/ucBYYSKCX+lpxLMeAy7waeHrO+OQIfi9COOQiN5Tn+u+nNmsRXdf/AD71t3SwuLXewdKod9k9y/jRUSwZ4/x+5BZSiNyD51arX+h/RYT/P7R8+dLB8FaS5GtuxvMQ7Y6nAG9viCvrUDHs9TssZ4yLzkiv3xChZXpGJyYuTb1UVIVI83SLkqmaIy3L2+Frir6ds9QWS29gcK1bYbeJtslxgGQpv7On5hoT2N4kvdpCYH+4jPzVVtwUuUZtiAo1zRbpU7945bsOb0hd3FUx1G79QfFPZvnMUXe2MHNZfvYODJnesJlxbSYC1A7NVe5wNsb8xxEjN9V0Yuu5uOopEvuojdsV56tKGuLGQi9/BhViPYxf83314xqYiuyV//+OfB/sktCpo/2WI7C6S9RVwHTfl2FI//rKdk9g3DH/htQSwcI1cb5FnUsAACtLQAAUEsDBBQACAAIACWE0kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAlhNJAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b63LbuBX+nX0KDH902plIwo0gmcrZiZ2bd7yXqbedTqd/IBKSEFOkSlK2nNmX6j5In6kHAClRN9uS41jN1BMZJHF4DvCd20da6X8/n6ToWhWlzrMTj3Sxh1QW54nORiferBp2Qu/719/1RyofqUEh0TAvJrI68biR1MmJF4TDMOIMd6JY8A4niepE0ZB3QskFITIeMBZ7CM1L/SrLf5ITVU5lrC7jsZrIizyWlTU8rqrpq17v5uam25jq5sWoNxoNuvMy8RAsMytPvPrgFahbuemGWXGKMen9/ccLp76js7KSWaw8ZLYw06+/e9G/0VmS36AbnVRj2DCm3ENjpUdj2JQvYFM9IzUFRKYqrvS1KuHe1qnddDWZelZMZmb+hTtC6WI/Hkr0tU5UceLhLiEhERwL6nsoL7TKqlqK1NZ6jZ7+tVY3TqE5srZgfVWepwNpdKHffkMUU4xemoG4gcIghJvC7hpmbqBu4G7wnQx3t3Mnyp0MdzKceehal3qQqhNvKNMSwNPZsADHLc7L6jZVdj31heW+yUvYU6k/gzDDAKZD2+CMX5qPgA/HNcqtTZKW1aqY7Wm0MQkWwofbpI/aKVsYpWTTJvV37FPcYdRt/EEb9VvYgin7z342LLK7trlu0Z0/zqDgX2WL/V6TK/06PVA5NrJ1+FRqUpqEYRHyIxP3BPmQHCKAMPcRiWAIKIJ0QMRH3IdTEiJhxgCxACY4YihERo4wZLPDD+EXD6wygXxQZq4GkJSIgCGOfIaITSqOIJWQTUxIUspAwveRDzcZ84QaFUwgLuCMhYjDGk1OBgQEGdwI52CeIkYQMzeTAFGBhNFHuMl1EZqlg0qKBEaCGIWQ1pDSLp1BPkTM7EbUcOlsOqtqiGrU40nSwFXl08VlEIeKtKx4rkKtFMQX/VQOVApN4tK4EqFrmZqUsJaGeVahRXK4a6NCTsc6Li9VVcFdJfokr+WFrNT8PUiXjW0rG+dZ+UuRV2d5OptkJUJxnuJmoXBMWsd0uZk8Za0J3p7wWxOidRxstZvDDJqVCuznRdmIyyQ5NxLL2gBQ/pylt6eFklfTXK9uo9+z/aavZnGqEy2zv0G0GisGF7RsP6ZgNe2HU9asJC+Sy9sSYhjN/6GKHIoVEd2o9ROCX2/dFFubimBtsTTZx6PVCbB1u2tKONPqeuEiOVfL3Y4Kk9utk/PyNE+XlywAZ3JazQpLHaA8FmZXb7JRqmyQ2IILfTm+GuTzSxcdzOn69XYKZ9itYDCywCOoDtSHjjmqx4EbrYxZ2kIKWxlsJXATbjpZzJOIWgk7DtxopSB+3dLqrbJmmwQ3ZnRpaxr2VjPHRr/p8rNMVxfNSaXjq3qrxN3w02wyUIsYWtVJvpTOfm8tyPpXqshUWsc0OHOWz0qXoq1wT1SsJ3DqJmpIpHHXX2EB7mqiRoVqFp5aWuYAs7O4Ha0bl62q90U+Oc+uf4VYWFtAv9essl/GhZ6amEMDaARXahlViS4l9JGkfZ9JQth6bPoFwFMZaCA9Z9U4LyzxgqoCo8m9VE2AbKHKhlc2m6hCxwugx5bBwaJm9brDbh1dBmWUDz5BuVv3ztKPML8jApFMp2NpiV8dZ/JWFSvYWG0/5kltuZYrU8MY0URDH+xADKKJnJtGCBoHJRTDCmgzuCNb0mZXmpbFxJByuCVgzBzdmtpgDoZ6rhalHmDSnyEs5Mp2lrlQQZ2+Ajpa2oSt6tS0Bx91kqhssV6ZQQBZN0ClmroNI+gSykW3uxUOpgCALQqtiHWuuddJw3UndVhXHJGX2CO8BE8btZdIeOxeivPJRGYJyiyLO88qqEAAvLdkFhJa9PwNFDfAATr0rT10PphVjcAbp7fWtuF920QWXnzjHeRmwz9Hbhi4YeFp/EBPtwtbaVzVOKpjDz67B2X3oGiWbLrZCgVyV9dK4m48L8Cta1C+cTDOt8Io74bRRMkCJLmJYs3y6wxbdoQ2ivBg7JomrpumGb8ckKTGcalqW2QbfnBXaKt/Ze6e0nVIPZmmOtbVRo2ZTwtQaHKg3vWph+DiiffH4UuE/+Stxl/vnsA8PSwwCXVsxo41m/kCkNqKaDB9mtj8uYDGOsozmW6J0lMXpXIjQgd7ROjgPjh3hOiuen44kqSOzgbJZbM5pPAeHp1nTXSOD4jOs6OKTkOqnik4z3YFZ7xHcMZHG5wLuvqUsbkK9y820FZRHmzA+3afJv/2CKJ1nSHdw49WXhlsVGHapeETRPrDoH+3D/TvvjXo4cCwlK+CfbyB/ft9sH//jWDflHdAnj8b8h/2Qf7DN4Y81BvxRZBfBQ0WOFpicqrThFjghhoUOOfEOI6GQxr5viSKD2M15FwQpQSNoqFiwT9vQEVWyKT7aTpyi9DZqYyvRkU+Axevv5AqK1lU1uMos++4bPOyROh0yyP/Q55itndh8gT+wtv8tdcT39tddCXZg64kx0JX1h/0OrYvfmW+sgXld7tQVnugrI4VZdsAj4AUJhvwftynRn/8Rmo0cHYW4vYP+7IccRVE+8Z9gdF//r3+7hQwIAH3GY2oT6KIs9pM+41m8z5TwBIZCX2GAxJEfvTAt5sBrV9uciqa2GQPfLl5aD4R/Oh3uge9Vy3ilsN2RM0WyDfCiO717vUveSWrjfcwtj/bygZuR5LWCbeSglboD3Kal3++Oxm39P76tmdhAI7i+34UBphFwg8wCenidSwLWRTgMKA8YJyYQG3n1RaNxHOVMwwicAwTUUQ5iUTUPFyzCEegJ2CgLgrovfpos0LBIoI5oyZfOHf6eNfHoI5wHgaCiiBYU/cshGavhvlhV8Mc7dEwR8faMDuWPh9Bxxxt4Hu+T8c8/0Y6JsHdgKx9meFrPuTQZ3zIOfvff8i5k4/8/px8hIqoTn360D+J/5+PPIqP0JqP/O74yPlWPkIP4yP0mflI2PWBdYTY9yEgCYRki45wjAkD8sApYUI8kI4Q2o2CFn3wW2wkDH2fUBYwcBl7IB0Ju1xgnwvBMA78EIsWG8GwRCoEXPWPjY3c1eJ+OKzFtdf47O2tw7us8exT/JVgC3/7YRd/03vwN33Ylwienr5ZHHeXzOUXCMz3cx5B4Hrtb53Zb3fW/0vh9X8BUEsHCBJ0UmggCQAAQjEAAFBLAQIUABQACAAIACWE0kDVxvkWdSwAAK0tAAAtAAAAAAAAAAAAAAAAAAAAAABjMGM5ZmYyOTU1YTFlNGZjZWY0NDYxZWU2Mjk5ZmUzN1x3YWdlbnJhZC5qcGdQSwECFAAUAAgACAAlhNJARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAADQLAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACWE0kASdFJoIAkAAEIxAAAMAAAAAAAAAAAAAAAAAC4tAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDZAAAAiDYAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
 +
 +
=Satz des Phythagoras=

Version vom 27. Juni 2012, 09:57 Uhr

Inhaltsverzeichnis

Tangentenviereck-Quadrat

Winkelhalbierende


Spielereien mit GeoGebra



Satz des Phythagoras