Lösung von Aufgabe 6.9: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 1: | Zeile 1: | ||
− | ===Vorlage=== | + | ====Vorlage==== |
<u>'''Satz:'''</u> | <u>'''Satz:'''</u> | ||
::Von drei paarweise verschiedenen Punkten <math>\ A, B</math> und <math>\ C</math> ein und derselben Geraden <math>\ g</math> liegt genau einer zwischen den beiden anderen. | ::Von drei paarweise verschiedenen Punkten <math>\ A, B</math> und <math>\ C</math> ein und derselben Geraden <math>\ g</math> liegt genau einer zwischen den beiden anderen. | ||
Zeile 45: | Zeile 45: | ||
− | ===Versuch I=== | + | ====Versuch I==== |
<u>'''Satz:'''</u> | <u>'''Satz:'''</u> | ||
::Von drei paarweise verschiedenen Punkten <math>\ A, B</math> und <math>\ C</math> ein und derselben Geraden <math>\ g</math> liegt genau einer zwischen den beiden anderen. | ::Von drei paarweise verschiedenen Punkten <math>\ A, B</math> und <math>\ C</math> ein und derselben Geraden <math>\ g</math> liegt genau einer zwischen den beiden anderen. |
Version vom 4. Juni 2010, 02:50 Uhr
Vorlage
Satz:
- Von drei paarweise verschiedenen Punkten
und
ein und derselben Geraden
liegt genau einer zwischen den beiden anderen.
- Von drei paarweise verschiedenen Punkten
Beweisen Sie diesen Satz.
Satz in wenn-dann:
- Wenn drei Punkte
und
..., dann ... .
- Wenn drei Punkte
Beweis
Es seien also und
drei Punkte.
Voraussetzungen:
...
Behauptung
oder
oder
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | ![]() |
Voraussetzung |
(II) | Element | Element |
(III) | Element | Element |
(IV) | Element | Element |
(V) | Element | Element |
Versuch I
Satz:
- Von drei paarweise verschiedenen Punkten
und
ein und derselben Geraden
liegt genau einer zwischen den beiden anderen.
- Von drei paarweise verschiedenen Punkten
Beweisen Sie diesen Satz.
Satz in wenn-dann:
- Wenn drei Punkte
und
kollinear sind, dann liegt genau einer zwischen den beiden anderen Punkten (und umgekehrt???) .
- Wenn drei Punkte
Beweis
Es seien also und
drei Punkte.
Voraussetzungen:
koll( und
)
Behauptung
oder
oder
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | ![]() |
Voraussetzung |
(II) | Axiom II/3: (Dreiecksungleichung) | Element |
(III) | Element | Element |
(IV) | Element | Element |
(V) | Element | Element |