Lösung von Aufgabe 11.2P (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 2: | Zeile 2: | ||
<br /> | <br /> | ||
− | hier erst mal nen geogebra-bild dazu. <br />das dreieck abc wird an d zu a'b'c', dann an e zu | + | hier erst mal nen geogebra-bild dazu. <br />das dreieck abc wird an d zu a'b'c', <br />dann an e zu a´´ b´´ c´´ <br />und schließlich an f zu a´´´ b´´´´ c´´´.<br /> |
d, e und f können bewegt werden.<br /> | d, e und f können bewegt werden.<br /> | ||
− | durch spiegelung von abc an g erhält man ebenfalls | + | durch spiegelung von abc an g erhält man ebenfalls a´´´b´´´c´´´<br />--[[Benutzer:Studentin|Studentin]] 23:47, 3. Jul. 2012 (CEST) |
− | <br />--[[Benutzer:Studentin|Studentin]] 23:47, 3. Jul. 2012 (CEST) | + | |
<br /><ggb_applet width="1295" height="529" version="4.0" ggbBase64="UEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vxtc5tIEv6c/RVTfLhPEWJmGF5ycrZiJ86lytndKueuru7LFoIRZo1AB8i2tvbHX88MIJCQItmSglznkgPD9Lw93T399Ahn9PPTNEYPPMujNLnQsG5oiCd+GkRJeKHNi8nA0X5+/9Mo5GnIx5mHJmk29YoLzRSSUQBNOPYYc+2BQcZsYFoMDxyPsIGDXeZbJnXMCdMQesqjd0n6izfl+czz+a1/x6feTep7hRz4rihm74bDx8dHvRpKT7NwGIZj/SkPNATTTPILrbx5B921Gj1SKU4MAw///fVGdT+IkrzwEp9rSCxhHr3/6c3oMUqC9BE9RkFxB7OnREN3PArvYE3U0dBQyMwAjxn3i+iB59CyUZRLLqYzTYp5iah/o+5QXK9GQ0H0EAU8u9AM3bBtbGDDIBRTgxoGDJJmEU+KUhiXgw6r7kYPEX9U/Yo7OaSpoSJN47EnukR//YWIQQz0VlywuhC4WJaqMtQzg6oLURdTXZiSMVVzU4maSsZUMibV0EOUR+OYX2gTL84BwSiZZKC9upwXi5jL+ZQPlsvHb2FNefQnCMN6NaQgh+eG8Vb8WvBriophe5G4MWqRzfcctBoSY3ePMclLxqT1mF3LJGzDMq0t6Ko57LRO1hgThpIf+bs2IiV7jKjKLxvQMk+yxNGwcpVR6R0ovxOypSYLPs2Fv1AXMVeYPUYMfMOywcoZwi5cbILAGxBmyGRQxA6yxNVG1IYKE1HkICGHKZLOwRz4x7RlZxZi0Jl4aoNPIgwDmYhRhKVPmQg8CUm/BB8lFCQYQwwaieExEV1QC5kWlKiDTJijcEkbgyCFhlCG4QmiGFHRGNuIWMgS/WFTuLrliKlDlwRZBrKw6BC8GjxaeTPIO4iK1VglXFEymxctiPxpUN0W6azWBUjDfrTc9tT+1NoV34xib8xjiBO3QpMIPXix8Ag50CRNClQpkahnYebN7iI/v+VFAa1y9If34N14BX+6Bum8GlvK+mmS/5alxVUaz6dJjpCfxkY95zTGjXtSzxoKtFFhNitYo8Jq3Nud46ZQg+Y5h/HTLK/EvSD4IiSWWwMg+WsSLy4z7t3P0qi9jNFQhpwRn/txFERe8i8wVjGKwAXVEUhuV1UIYsSpZpJmwe0iBxNGT//hWQpblYN1bDrLD8TVharCjOmuReqPA0Em9z3hfdjUnVYr8K7FhjpiqcH5Q60k74kv1xtmwrkbhS/5ZRovH0kIrrxZMc8kf4D9MRPr+pCEMZdmIp0bgrN/P06fbpV9UNXXt8UMSoaawTiU0CPYHgiDdYbldayuUkZMrZYypIwhJYzK4KKgrscukRLyOlZXKQUWrKZWLhVXy8RGNUyUy03N0ErXqTYsYf8i2M+TqLipCkXk3y+XKhr8Mp+OeW1F7T7xofocDVfMbHTPs4THpVWDMufpPFdO2jD4gPvRFIqqooTEE+r6J0xAPQ14mPFq4rHkZgowWWs07XXtsezqOkunX5KHb2ALKxMYDatZjnI/i2bC5tAYIsE9X1pVEOUeBJKg2U64ISzdFwED4CkENOCg8+IuzST/gn0FrsL7Yj4FsoUKaV7SQmuYP0gaJ/BE6fgP2Nrq6KfqlwqD6k5Tk0bpxbM7T1K90qS8Bc9aMMj+vqbBKjiAvVwBuPlMdCC0O+NcGYaaMdzMoEPpT62dCvDO0dOFNsA6hXC7EJwcJvOnYvGKx4rVCi9rbc7q6YqqwH4UUN+B7LJfkL0MMKIb5OiIXZ0/YqYuOOtC4OQeBjA/nU69JECJZIS/pfEiTBNtyVE8Q3gn8rCwOOQRAaPCaF5U9bDPxRBIsBLzlZgHFyABYzVgOUyHhtSAlQ7qrtoRoQC+cg9JWS7zhKIMUPLmH1EQcMlVh9vV2wC0qV/MqNQww2XIWioY76PgzVaY81CU6on437HD/Se6pyUu7YnopiPtSfQhzInqlNC1gLw7/Py/iWqSqygZTWdx5EdFbTOxsO4vSQExk8ugsR4K7zmfCQ7ya/It85JcHHQomUaI3RFqrz9QgzkZ7R9XIs/KWDHAhu7azG38vBo1jPujhgHRmTL5QYU8wTpxK7p/hmi3o9zHF0S5JrP/oXGO6rYiBlR3na1xjh2AGHx6DZBhXHEDUze3c4NdMWtzg69RlqVZNzX4uMYJPvzNm6X5378X/VtJQNnkh7K0JaCO7pDSBk3rCFyrE8/LTXhe7o/nZU/xZLpLm2HOPUyytAO6V5vQvdof3at+oSuIW4tdUIm1pRvm6fKEEhKVLdQF0sK3M3NoNvSbDb26IHKJ3bTUnVE01HWavMIoz7kM0qHnY6UWOxnl8We8wrhMe9XfGykH0C/HptbZ0q+1nKOPOljLPhhtk2BKdcYaOwh+NfoY91AfdRJSZ38m1m2HnZMX7MIOm/v6p00c8dlMsV8RGFOdlTql23OWQ/LF7QhfPhfhy14jTHS3vZsdg+N0M8jteF89F++rXuLtihAt8T6GQW8lkR1UsoNQ7kQrO8hlB8XsIJovp5s/inRWpxKyfCLSeYgwe4B5rxxvb2OeAyA9bYEzCr87kdAe6mQTE12eg9s6bda/OibaQ6V0nIpb8hjxXKFvR9fr13DAWwVjXO5epzjdXQ+g19tZ/Au5fL/4j1nSzQE9PaPfjvnlyzDvat43zI0fzfG3a+DqZRroat4TDQxwudGACtrs6TtfxR0tC9iYC2zMCPbICzZmBxtzhI2ZwqHyhVNnDdWLncqMxLftJ00ZXsKHDjX1fQ6sxTetrfc07LOlSVvTht7p5buH2AMRPV6LLrq2lt7oYu0A29Ldts+ckR7aAem21EM7IH3cdOQXbN/vV7UaPE+H7bfqDxHlDd1sfwtf7nJ29fbIgNi641itr5Rfl04/bSJ3fD+d8p7olErVLWQEw1apREe3zimNb+vtBqbc7Yh8TWmT7UoTq19qpMcaM3Xsmsc//9oL9GsFerAGergH6GFPQN9h6xOvfK0knydWQu1SK5qYKE2Ea5r4vE/6+flZyWabSBzqxSVHZy41nKW5y0Muqlvi+/CGF8h3RcShZFMz5IBHYN2ZaB34ZSJ4rdK+z5tSS1I6yu9YyXN5Ay0m8sYEzf2On5UhktPlg9sOPo+UEArADj7X/5OjZyUevFe6eA2kZjvek17hDabfZB/wo94qH9S2DxppHX+cU6q3XRNhrzQxqE2/tvwTccOjQD9s/qmw/KP88v+Xef8/UEsHCE/6KzhjCQAA/EYAAFBLAQIUABQACAgIAJy940DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAnL3jQE/6KzhjCQAA/EYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAD6CQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <br /><ggb_applet width="1295" height="529" version="4.0" ggbBase64="UEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vxtc5tIEv6c/RVTfLhPEWJmGF5ycrZiJ86lytndKueuru7LFoIRZo1AB8i2tvbHX88MIJCQItmSglznkgPD9Lw93T399Ahn9PPTNEYPPMujNLnQsG5oiCd+GkRJeKHNi8nA0X5+/9Mo5GnIx5mHJmk29YoLzRSSUQBNOPYYc+2BQcZsYFoMDxyPsIGDXeZbJnXMCdMQesqjd0n6izfl+czz+a1/x6feTep7hRz4rihm74bDx8dHvRpKT7NwGIZj/SkPNATTTPILrbx5B921Gj1SKU4MAw///fVGdT+IkrzwEp9rSCxhHr3/6c3oMUqC9BE9RkFxB7OnREN3PArvYE3U0dBQyMwAjxn3i+iB59CyUZRLLqYzTYp5iah/o+5QXK9GQ0H0EAU8u9AM3bBtbGDDIBRTgxoGDJJmEU+KUhiXgw6r7kYPEX9U/Yo7OaSpoSJN47EnukR//YWIQQz0VlywuhC4WJaqMtQzg6oLURdTXZiSMVVzU4maSsZUMibV0EOUR+OYX2gTL84BwSiZZKC9upwXi5jL+ZQPlsvHb2FNefQnCMN6NaQgh+eG8Vb8WvBriophe5G4MWqRzfcctBoSY3ePMclLxqT1mF3LJGzDMq0t6Ko57LRO1hgThpIf+bs2IiV7jKjKLxvQMk+yxNGwcpVR6R0ovxOypSYLPs2Fv1AXMVeYPUYMfMOywcoZwi5cbILAGxBmyGRQxA6yxNVG1IYKE1HkICGHKZLOwRz4x7RlZxZi0Jl4aoNPIgwDmYhRhKVPmQg8CUm/BB8lFCQYQwwaieExEV1QC5kWlKiDTJijcEkbgyCFhlCG4QmiGFHRGNuIWMgS/WFTuLrliKlDlwRZBrKw6BC8GjxaeTPIO4iK1VglXFEymxctiPxpUN0W6azWBUjDfrTc9tT+1NoV34xib8xjiBO3QpMIPXix8Ag50CRNClQpkahnYebN7iI/v+VFAa1y9If34N14BX+6Bum8GlvK+mmS/5alxVUaz6dJjpCfxkY95zTGjXtSzxoKtFFhNitYo8Jq3Nud46ZQg+Y5h/HTLK/EvSD4IiSWWwMg+WsSLy4z7t3P0qi9jNFQhpwRn/txFERe8i8wVjGKwAXVEUhuV1UIYsSpZpJmwe0iBxNGT//hWQpblYN1bDrLD8TVharCjOmuReqPA0Em9z3hfdjUnVYr8K7FhjpiqcH5Q60k74kv1xtmwrkbhS/5ZRovH0kIrrxZMc8kf4D9MRPr+pCEMZdmIp0bgrN/P06fbpV9UNXXt8UMSoaawTiU0CPYHgiDdYbldayuUkZMrZYypIwhJYzK4KKgrscukRLyOlZXKQUWrKZWLhVXy8RGNUyUy03N0ErXqTYsYf8i2M+TqLipCkXk3y+XKhr8Mp+OeW1F7T7xofocDVfMbHTPs4THpVWDMufpPFdO2jD4gPvRFIqqooTEE+r6J0xAPQ14mPFq4rHkZgowWWs07XXtsezqOkunX5KHb2ALKxMYDatZjnI/i2bC5tAYIsE9X1pVEOUeBJKg2U64ISzdFwED4CkENOCg8+IuzST/gn0FrsL7Yj4FsoUKaV7SQmuYP0gaJ/BE6fgP2Nrq6KfqlwqD6k5Tk0bpxbM7T1K90qS8Bc9aMMj+vqbBKjiAvVwBuPlMdCC0O+NcGYaaMdzMoEPpT62dCvDO0dOFNsA6hXC7EJwcJvOnYvGKx4rVCi9rbc7q6YqqwH4UUN+B7LJfkL0MMKIb5OiIXZ0/YqYuOOtC4OQeBjA/nU69JECJZIS/pfEiTBNtyVE8Q3gn8rCwOOQRAaPCaF5U9bDPxRBIsBLzlZgHFyABYzVgOUyHhtSAlQ7qrtoRoQC+cg9JWS7zhKIMUPLmH1EQcMlVh9vV2wC0qV/MqNQww2XIWioY76PgzVaY81CU6on437HD/Se6pyUu7YnopiPtSfQhzInqlNC1gLw7/Py/iWqSqygZTWdx5EdFbTOxsO4vSQExk8ugsR4K7zmfCQ7ya/It85JcHHQomUaI3RFqrz9QgzkZ7R9XIs/KWDHAhu7azG38vBo1jPujhgHRmTL5QYU8wTpxK7p/hmi3o9zHF0S5JrP/oXGO6rYiBlR3na1xjh2AGHx6DZBhXHEDUze3c4NdMWtzg69RlqVZNzX4uMYJPvzNm6X5378X/VtJQNnkh7K0JaCO7pDSBk3rCFyrE8/LTXhe7o/nZU/xZLpLm2HOPUyytAO6V5vQvdof3at+oSuIW4tdUIm1pRvm6fKEEhKVLdQF0sK3M3NoNvSbDb26IHKJ3bTUnVE01HWavMIoz7kM0qHnY6UWOxnl8We8wrhMe9XfGykH0C/HptbZ0q+1nKOPOljLPhhtk2BKdcYaOwh+NfoY91AfdRJSZ38m1m2HnZMX7MIOm/v6p00c8dlMsV8RGFOdlTql23OWQ/LF7QhfPhfhy14jTHS3vZsdg+N0M8jteF89F++rXuLtihAt8T6GQW8lkR1UsoNQ7kQrO8hlB8XsIJovp5s/inRWpxKyfCLSeYgwe4B5rxxvb2OeAyA9bYEzCr87kdAe6mQTE12eg9s6bda/OibaQ6V0nIpb8hjxXKFvR9fr13DAWwVjXO5epzjdXQ+g19tZ/Au5fL/4j1nSzQE9PaPfjvnlyzDvat43zI0fzfG3a+DqZRroat4TDQxwudGACtrs6TtfxR0tC9iYC2zMCPbICzZmBxtzhI2ZwqHyhVNnDdWLncqMxLftJ00ZXsKHDjX1fQ6sxTetrfc07LOlSVvTht7p5buH2AMRPV6LLrq2lt7oYu0A29Ldts+ckR7aAem21EM7IH3cdOQXbN/vV7UaPE+H7bfqDxHlDd1sfwtf7nJ29fbIgNi641itr5Rfl04/bSJ3fD+d8p7olErVLWQEw1apREe3zimNb+vtBqbc7Yh8TWmT7UoTq19qpMcaM3Xsmsc//9oL9GsFerAGergH6GFPQN9h6xOvfK0knydWQu1SK5qYKE2Ea5r4vE/6+flZyWabSBzqxSVHZy41nKW5y0Muqlvi+/CGF8h3RcShZFMz5IBHYN2ZaB34ZSJ4rdK+z5tSS1I6yu9YyXN5Ay0m8sYEzf2On5UhktPlg9sOPo+UEArADj7X/5OjZyUevFe6eA2kZjvek17hDabfZB/wo94qH9S2DxppHX+cU6q3XRNhrzQxqE2/tvwTccOjQD9s/qmw/KP88v+Xef8/UEsHCE/6KzhjCQAA/EYAAFBLAQIUABQACAgIAJy940DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAnL3jQE/6KzhjCQAA/EYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAD6CQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | ||
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] |
Version vom 3. Juli 2012, 22:52 Uhr
Zeigen Sie, dass die Verkettung dreier Punktspiegelungen wieder eine Punktspiegelung ist, wobei das Zentrum der neuen Punktspiegelung auf dem Eckpunkt eines Parallelogramms liegt, dessen drei andere Eckpunkte durch die Zentren der zu ersetzenden drei Punktspiegelungen gebildet werden.
hier erst mal nen geogebra-bild dazu.
das dreieck abc wird an d zu a'b'c',
dann an e zu a´´ b´´ c´´
und schließlich an f zu a´´´ b´´´´ c´´´.
d, e und f können bewegt werden.
durch spiegelung von abc an g erhält man ebenfalls a´´´b´´´c´´´
--Studentin 23:47, 3. Jul. 2012 (CEST)