Benutzer:HecklF: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
(2 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
=Dem größten Winkel liegt die längste Seite gegenüber=
 +
==Teil 1: Konstruktion==
 +
<ggb_applet width="800" height="457"  version="4.0" ggbBase64="UEsDBBQACAAIAE2t6EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAE2t6EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnbjuM2En2efAWhh32alkmRoqRZ9wTuBgY7wCQTbE+Cxb4sKIm2mZYlrSTfGvmpBPmOfNMWSUmWL+2+TNLJrDE9lMgSi1Wn6lTJHn+9WWRoJataFfmlQ1zsIJknRary2aWzbKYXofP126/GM1nMZFwJNC2qhWguHaYlVXrp4JhS4hNyEfpRcMGmjF6EkeQXHqUJn8ZkypPAQWhTqzd58a1YyLoUibxJ5nIhPhSJaIziedOUb0aj9XrtdqrcopqNZrPY3dSpg+CYeX3ptBdvYLu9h9bUiHsYk9G/vvlgt79Qed2IPJEO0iYs1duvXo3XKk+LNVqrtJmDwTT0HDSXajYHowLGHDTSUiV4pJRJo1ayhmcHt8boZlE6Rkzkev2VvUJZb4+DUrVSqazAQS71fS/0SBQFBPtc6ygqJfOmlSWtzlG323il5Npuq6+MRnioKYosFnpH9NNPyMMeRq/1QOzgwcC5XcJ2DlM7eHZgdvCtDLOPMyvKrAyzMow6aKVqFWfy0pmKrAYXqnxaAXz9fd1sM2nO007srCevwaZa3YEwxRAn1ucwj/Fr/cfhj+mF0b6RZKC1qZZPVNqpJJTzx+v0PstS2illETnW6fn32MnPKLWGP8pQf+BbUGX+mb8jjfScmYca7f3nKeTsRUwcj7pcGbfpgeq5lm3Dp5GLWicMjZAf6bgnyIfk4AGEuY9IBEPgIUgHRHzEfLglIeJ6DBANYIEhikKk5QhFJjv8EP5jgdmMIx8207MBJCUioIghnyJikoohSCVkEhOS1KMg4fvIh4e0euLpLShHjMMdDRGDM+qcDAgIUngQ7kG9hyhBVD9MAuRxxPV+hOlc56E+OmzpIY4RJ3pDSGtIaZvOIB8iqq3hrbtUXi6bPRcli7S7bIqyxwKkgZB2tGcJao8VX40zEcsMKsWNRhKhlch0RhhF0yJvUAeiZ+dmlSjnKqlvZNPAUzX6UazEB9HIzTuQrjvdRjYp8vq7qmiui2y5yGuEkiLD/ZmLjAyuvf7UcEMHC2y44A8W+OA6OKm3gBW0rCXoL6q6Exdp+l5L7KgBPPkxz7ZXlRS3ZaH2zRiPTNEZy2WSqVSJ/AcIVq1F+wXtapDmq64G+UHUnaSo0pttDSGMNv+WVQG+pS4Oo4BF9hNCYd22K0HksjCEvLAfnUCJ0LnHsctp4IPk/kQniZlVJ1c9LGIjdxbOKp3Og5v39VWR7aaM0deibJaV6RmAESttySSfZdIEhuFYKMjJbVxsblqKtnt92pZwh+0J4plxNgJC8Hw48KwdYzsaGX20XgobGWwkcBdiKu3XSeQZCTPGdjRSELP2aK2ppDOT4E6Nqm1347TJ0lGUjnhd3pe5aj50N41KbltTiX3g2+Uiln3c7O9Jfq89x6ODwBrfyiqXWRvHAOayWNY2LQchnspELeDWLrQuERqu7+EAdjaVs0p2B89MP2YdZlbxMEKPps1W76pi8T5ffYJYODjAeNSdclwnlSp1zKEYuP9W7qIqVbWA0pEOn9OJB6YnukSAexrtGkjJZTMvAOx3WcEBrRToBKaN+GIh8hTlpuS8zxvwHXCXs6NBAYSymQAssAvwydZcGhOKZdMJTOyZ2910MmdyAc0bakzsmvDvMZyY3TVYqIh/BG19MbXru2iA5T5Oda2c2SG2g8jKudCtY+vSTGxltedks+E3RXoCkRpt7KNoe+lcmIs729rb1lafWKfhHl/b2QMsIcCssUfu/M6YfcqVh/67eor/rp7lP+JZtjBjyxbPdqHIITlMiAHzljb5Silt3tozw0UJ2xm62ysdnfO5S4zzfy/fn3PZ9bNcNqTOP91dvgsdgvaX5+q3sT8gWLPtrMgPwvXKZv01DF6b5nuBC5SaQc0iVkxYsRgG6DCSh4LaKuww6LfaLz4NNEO38MpXmwrZtLXQXPxDpak0jfDoPLwDhw7xhVc4W0AxO4ExeQrG9wdiLWf6rj+LeFYonj/qswnwwgaTpcAoiIYf3wZZ4HqYDKbDw+7g8QDJ/+b2kdqWbLUoM5Wopo+qTMd/X4QgX47r8q2UpW6IPuafKpHX+psWKzOo949EIn5xJD5Op7VsjOP12+121/U/BNQOJ8sDd23R+n/BIvlLZUXXF5gSdTfc60vw9D6vX6sqyeQBrV9bvr464vP0PGdDd6mSHpT0AdDuod39N5Jn43USi1099U+DoWYyX8FR4X0VoQ1uv83d4q4P6WY2pI8D0k7dkUHNhXpeqQ2adPKTTmri6Th0PZ/ukSaa0FbFhPVZPPE7Cj4ZKfprBDVVyXmA72vaU4txfNxs/k2URf13u/ykxrN98EXb9wFnUsuA/LGU6WMWhTjwQ0JC0vIncWkQ8YgzSmHKg5L3B/RSNy27neylOi8ewiLPQ3HImPJPTb4BWZ7yqIaJun7kQ+vgMRKC+0nAjKdDlxFOWOgxWCARDr5YZjVf3pzH2LTD10dQ//brf8h5tM3XAz2WRt785iGyZQeEG/IoDMMA8zDwMHj+oS74nvdC3H7/g73PbYKfh6Kokl2++d0bU5YV63/KaSY3xs2fg0lf7Awa96Uf+Nh7Iibeg5jwl8dkwJehTcToC0fs+K3zt1+ehNQvhzgR16OcUuZHHqdARSF7Hk64RemYTh+NUftS/+Vh1DLd5F6O+/lJGP18nEs+pozp34QJjijlL4zRXwGF0fDbXPNLSfuz/9v/AVBLBwhJg4JF6gcAAJMgAABQSwECFAAUAAgACABNrehA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAE2t6EBJg4JF6gcAAJMgAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAgQgAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
 +
 +
 +
==Teil 2: Der Beweis==
 +
<ggb_applet width="1200" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vxbb+PGFX5OfsVUDRZbYC3PnUPHTiA7CLqoc0F2mwTFAgFFjiSuKVIhKVs2/F/60j+QoI99y3t+U8/MkBJ1sWxaVrqud63hDA/ncr5zvnOGo93jz2fjBF3qvIiz9KRDuriDdBpmUZwOTzrTcnCgOp9/9vHxUGdD3c8DNMjycVCedLiRjKOTDu4zRgQhB0r43gEfcHagfC0PKGOhHPTJQIZeB6FZER+l2dfBWBeTINRvwpEeB+dZGJR24FFZTo4OD6+urrr1UN0sHx4Oh/3urIg6CKaZFied6uIIult66IpZcYoxOfzxq3PX/UGcFmWQhrqDzBKm8Wcff3R8FadRdoWu4qgcwYKZoh000vFwBIvyOO+gQyM1AY1MdFjGl7qAZxtVu+hyPOlYsSA19z9yVyiZr6eDovgyjnQOCuoyIaiixPc9goU0Y2R5rNOykiXVmId1b8eXsb5y3ZorOyI8VGZZ0g9Mj+j2FlFMMXplCuIKCoWU7hZ2bZi5grqCu0I4Ge4e506UOxnuZDjroMu4iPuJPukMgqQAFcbpIAf45vWivE60nU/VsFg9eQVrKuIbEGYY7MTpHNoxfmV+Jfxyc+NweZGkMWqZT1sOWg9JmJQPH5PutFJWD8p9sj4mFXesU24Z1C38QQsVDd3CUPav/V0bkW1b5uqIrr7bgJL/IUs8Pqx95bhyD1SMjGxlPqUeF8ZhmI+Eb+yeIAHOIT0wc4GID4VHEbgDIgJxAVWikDSlh5gHNzhiSCEjRxiy3iEUfHDPdiaRgM5MqwdOiQgMxJFgiFin4ghcCVnHBCelDCSEQAIeMsMTarpgEnEJNaYQhzkan/QICDJ4EOowPEWMIGYeJh6iEknTH+HG16UyU4cuKZIYSWI6BLcGl3buDPIKMbMaWakrTifTcklF4TiqL8tsMscCpIGQFrTnCGqJFT86ToK+TiBSvDFIInQZJMYj7ECDLC1RDSJ1bcM8mIzisHijyxKeKtD74DI4D0o9+xKki3psKxtmafFtnpVnWTIdpwVCYZbg+ZyzhDSu6XzWUGGNG7x5QzRuyMa1t3HcDO6gaaFh/CwvavEgil4biQU1gCa/SZPr01wHF5MsXl7G8aENOsd6GiZxFAfp92CsZhSjF7SIQYav6hgkPL+eSZZHb64LMGE0+4fOM9At62Lle9x3PwoC63V1x/O7XCnwC/djHCgMjO9J3JXMEyC53FBLYu6G05dzWIKZXqxwmBt3blReF6dZsmiyiz4LJuU0tzkDMGJuVtJLh4m2hmE5FgJyeNHPZm8qinZ9vb2eQA27GfSHVtkICIEKmPCwKvuutDJmanMpbGWwlcC1icXR/D7xqZWwZd+VVgps1k2tWiqpl0lwPUxcuOymUzlLTVHG4k14n6ZxeV5Xyji8qJZK3ANfT8d9Pbeb5T7JU/V5fLhiWMcXOk91UtkxgDnNpoVzy4aJRzqMx1B1NyqVBAauv8MEXGukh7muJ57YfMwpzN7FTQtda7ZdfZln49fp5VuwhZUJHB/WszwuwjyeGJtDfeD+C72wqiguAggdUfM543iw9NCECFBPaVQDLjktRxmA/WWSSUArAjqBZis+HgdphFIbcl6nJegOuKuzoMEACGXWA1igF+CTa3tpl5BNy1qg5+Zc9WacOdFjSN5QaW3Xmv8cw57t3YCFsv57GG0eTN39hTXAYqLYrsRSSCU8qobvv58bsQmkQ1f0XREkk1Fg8spK30lwrfMlBOxoX2XRBrgKNHOPouuTzoG9uHF5v8t7zXKMjy6RuWtdARqsz2liTdffWp1s0vOqck/bKPf06ZVLqOMZW1Y882j9Bim4lRu11BPnthOtnce7BcHFBLqzRLkUdGpkZJdYZJ4KmG36PHt6fTYZ+X+uS9GFxMMok3bNJm8PZp5cD7N0xdBPHZmcQUEr9lgyeWDqBEIhcWKBE+tDAYlLeJ87uAFrgOZdLce0EnKsC9hJFjbwllWItRd/jaNI2/z6cDv2yxnRw8CHbaML2phvMADSxgDuNuFCD01tPtHg6Y14+zoeTboHzgwd7fqe3/wRzjy9LsWk0axW05WHQ6t/Tt0jhcsh4vEkicO4nNtjYjxnHhVBLeuJwoXWE5OhfZO+zYO0MK9+nEwjAXkgTP0PC6ZvBoNClxYVsxe/XuxR7kNxAaKjl5sqiv6/ABV+WEBt86c6i7Ex86bZ13OAYTmWnMV5mOiVUHLmYsTpWgyJtscJQCYO54hF9yB6L9UPt8d5/HgwNwK1CPBiM1LxUKeXMDPYlyM0w9Vb62tcZ011y4zMjYRUTTekkQRAgpHHM9Sr5Xu1VI8aI+1SwZa4GPVYNUSPz/2/J2pm32hG5nVJPIjD7ejftTmJnAH01/PmF8EkKz51t1vl0NWDuzn5Bot49DalQcXMEat8KBMLzH2FPaEIUaSiZdJlni99yRmDJgphdg+Z35uKNDdmfrWKVzHT23FaJWK9q9uO9+a2DQ7epG6DIesKX0AuQzlRgA3xuIVBdTmRhCvK4QbxsfdsCdu+3tpuADazP1uzg9///RPZbgr2BcocaCtv+oCZTWsgukr6SikPS+VRDJq/L6G/z6U3WAvB1eszTHfN5x8HcZCHC08V9c4wSbKr7/Qg0TOLwS6AzQOsheouxwUAaEvA6L2AyQ8MsAYNK+fC/jOHc33r/fuvrWD8dRVE0qVMMsaFTyUDElN8VxDvfIVC8DpLPxjA6rXH8wOwItDendT5SysAf1n3QoEZ5+YwnmCfMfkhAfghQKRnkxyGMausFPBWz0rIyOHGSefFz9Os/PQT9EOco3foKksSncJFX1/puNDpEbp9Z9d6i14My0+h1tclVE5cbd7cv0WfuK7s8MsQljBeZ3nwB+dBe0h14uI8eKt/XNZYdbpZ6DwezA+z7bkW7tTpSPV8UQZ5ad+HI+OafldIJoTC1KceZcSzjiq6ElJYAlUqOKRKSy8r74eHrsBzavEAYKJpHo6g/MF8EaWY5NNw9Kc2qqe7pqCD54ILgTyWKsKpFBj2epDSVsAQzHxCIZdlkK9K0Q4YtgJML02D0VgfASTWG5L23sB23sz/RJ4TKJ4nCSROEnYRsJOwoPCuxD40Ug6RmPtC3gnKkir7WZboYPHyfLAaHBqqe0g82F1/i4gtiTv1kWqbesNgYuG0bc7JwbH1Ubt1D9d3Ey1XvmdfX1eLyWcfqpfax9opZbQXlTyhr21QCtv+nqSplL+5k/ML2/JFrmMdXqDe6VlLy9mLku45RXycityL4cX3PR7qT0U4yuOyRGTdfjYyPF9l+H6ZB0ObFV1m5vP27PQWimA6sJXe7RGqtpltWJ9/uK9wn57zOWdCUU9Kzny/2sqwLlA+UD31PelhodjjOP/9ftx8fxZMaZuIMMx/+08aTdPhg+1XbM5QwFZfNvP1v7yClt4szsbWsM3nOWxOgqSNEYtdjfj9czJiiTEk8oQITD0lq68hcEU8jypmN6HCb5dNyhWsbt9FOimDn2idSVbbrRaQyF0huXhGkAgqsTnQIZ7gQC/V12x8yYXwIbu0n3fnkhsh8VYgeUmsp5zr8Tgw+y7yyu6+0gudBJFTXxFYN/rkxZ8Jhie+0+EotfEituHiuzbwebvClzwb+GhXeYoxxZX0YYdWH9pDWJDcJ5wLLKnyuPe4uHCxl7iQ7i8uMLz15d6WzIa1zIyTvajmyXijoRrsjp4Y81qoZhEyNyhmo8+rFZ+vWJigd7DUYV2lbfxYfbhHfXugYewLrgSXEvwW136saB0rqc8Ib0fD/mYaPg2KuLiy7FsE5U0bRPxdEXky3/8jmJVQ5lEPSykUp/UxulIKN/7c/eprK32M90IfT5YJrtMHJAmPZFbaklnTvajmyahgg2rq866WzLpBMZuPGfBahlsfJ7j8tmJas6GephF8Ftk4LqFck3SZcKtjBryry2fPxuU3k7D5qpTwILvyzNEY7MB93PJ9N1k9KHpJLRG/ZFCAm1wF4Uibo6Pe9Ld/6nRBza/m+bD9Hgbo9jIuf/uXgda9LDmp3pnUwLuqAdtdtQG6xYHSZqAnzwno5qZH1ThL2O4oLikB2ueeVI/j9mwvBPZke5ImgbmVM8Ueye28JbdP9qKaJ2OYpmrcESSn4lHcvkExm6lh9ZCycSYJ/nwzNbTwfZYH0wJmdmO6buPTO59UPhuf9rvc94RPKfex+R5R9Z1J0vU4xsz8BwOeIEypO1Pow+Y/o7P/RLX6/xY++y9QSwcIAGqecGIMAAAMQgAAUEsBAhQAFAAIAAgA76zoQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADvrOhAAGqecGIMAAAMQgAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPkMAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
 +
 
=Aufgabe 9_3_SoSe_2012=
 
=Aufgabe 9_3_SoSe_2012=
<ggb_applet width="1100" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIAIuc2kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAIuc2kAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VrhbuM2Ev69fQpCVxQ9XGKTIiVZu06LbNu9C5B2F+e9XnFYHEBLtMy1LLkSlTiLfYF7ivtzj3H/+ib3JDckJVuy46wdJ4smSEJRHHLImW9mPskefrucp+hKFKXMszOH9LCDRBblscySM6dSk9OB8+03XwwTkSdiXHA0yYs5V2cO05IyPnPcyYRh7I9PuR/hUxYzfjoWgpwGNGI+4wMqgshBaFnK51n+E5+LcsEjMYqmYs4v84gro3iq1OJ5v399fd1rVPXyIuknybi3LGMHwTaz8sypL57Dcp1J19SIuxiT/i8/XtrlT2VWKp5FwkH6CJX85otnw2uZxfk1upaxmsKB6cB10FTIZAqHChhzUF9LLcAiCxEpeSVKmNvqmkOr+cIxYjzT48/sFUpX53FQLK9kLIozB/eo57kDl4RhQLDnax15IUWmallS6+w3qw2vpLi2y+oroxEmqTxPx1yviD5+RC52MTrRDbGNC43v2yFs72FqG9c2zDaelWF2OrOizMowK8Oog65kKcepOHMmPC3BhDKbFOC+Vb9UN6kw+6lvrE9PTuBMpfwAwhQDTqzN4T7GJ/rPhz+mB/rdQ5KWVlVUByptVBLq+/vrdI86KW2UspBs63S9Hef071BqD77XQb2WbUGV+TV/WxrpXcfc1Gj7xyn02Wc54rDfxMqwDg9UTrVsDR8l5qUOGBoiL9S4J8iD4PADgLmHSAhN4CIIB0Q8xDzokgHydRsgGsAAQxQNkJYjFJno8AbwjwVmMR95sJi+G0BQIgKKGPIoIiaoGIJQQiYwIUhdChKehzyYpNUTVy9BfcR86NEBYrBHHZMBAUEKE6EP6l1ECaJ6MgmQ6yNfr0eYjnV/oLcOS7rIx8gnekEIawhpG84gP0BUn8avzSWzRaU6JormcXOp8sXKFyANCWmd9myC6mTFZ8OUj0UKlWKkPYnQFU91RBhFkzxTqHGia+8lBV9MZVSOhFIwq0Tv+RW/5EosX4F02eg2slGelW+KXH2Xp9U8KxGK8hSv9pynpHXtrnYNHdoaYO0BrzXgt66DW/XmMIKqUoD+vCgbcR7HF1pinRrAkq+z9OZlIfhskcvuMYZ9U3SGoopSGUue/Qxg1Vq0XdC6Bul81dQgLwibneRFPLopAcJo+Q9R5GdO6PVw+wdi7MaOuJh2h2DFMuI6+DzcHYGUdbNjiFjN4mrlIb4U68MmhY7sVueifJmn61vm/N/xhaoKQx9AU6EPdZ4lqTAYMekWanM0G+fLUZ2t7VpvbxbQw3YH48TYHUFucD0PBOp2bFsjo7e2ksJGBhsJ3KBNxqtxErpGwrRj2xopgK/dWn1U0hyT4EaNLE1Gw04dN0220uDXlb7KpLpsOkpGs/qoxE74qZqPxQpC3TXJQ6057G9gbDgTRSbSGtLgzCqvShuhLbTHIpJz6NqB2iRcu+tvsAF7NxZJIZqNp4aaWYOZUdwG69Zts9SrIp9fZFdvAQsbGxj2m10Oy6iQC405NIYyMBNrVMWy5FBF4vY8HYNw9EhXCzCP0qaB6KzUNAdnv0pzH7wVQ2aB2zr+UjEHvoWUwZiB6crWI0PktFFRPn4PyW1V/+z42mugNJZGo4n6WpjbQZh7KxgNbHm6mHLNBGuzpPxGFB1DGWU/5vGm+cA7VqMSC72A9v9CCAsdexy4WMCCJuI6iQw8UqKlnhVAyBv1Awd9sCzfslxtCR2GndRt7274EgBmjfgJc77ZNmcX22t7/o5NRmiPDozRSC94GKNF+XzOsxhlhgFdQtpx1gWZYw1ExIk2oDVOpZqBxC5VL7Blf53BVtZN9kbzLuvj+9t+bb9TUmOOuD1/0C0x2pjglcDzwtbPYDMdK2AKM3geKk3NUHV1MBd/kXEsDEu05erXzE4pbY6U80UqI6m2YLtcFLCexkZtjbdiqWBDMHDmfPVrlasXX6IReodkqeC/kBn8nwgAUvEOwYwCuprwiLFMTOdNlc20JK8m8D/pfWkXMYq7TgKOs44Rq/ZuR3UpyeF55wg3yvKSvxW/2HtrwBhGV4pCTlYE3hRw7DSGr+fDM3eh3uh4QBoLrMe2SAsgBPgK7QCAtsPs035zN/x2vpT5HLxw0XNPoPl5NEIHuMM91h1j9L9//Rs9ang9sF8gx+FOCHoHO6Zj0zE8fwmerUzGjUlhs5XY4h2fJ0G9nkxKofRZXdemI+r5dyYw4K7asebeKJoWUilEDjv2+Mhj74j2B4fX2jg+DWvj0L2N8xJI4W//zeIKCNu2gW4NWLoRsD+UOscCE1ZSFDqLJiLj1SrvjlTBp6m+OP/nn3RO1jcTuD6BuP4DwbBCmce81Kt8/CpVL7TcSfIRnaEQa1GZqt7+CYAemwCeTNwzoDYbFdmGvd8N+11R3yUyrwvg3Eme8XQ3pUm2KE10AKWJPsUoW655ZFJzC5m5acgOGCvsYbL1WPnwPKbrAOPYDbtHWwY/v9vgXQ5/fuQj0S3OIK59ijft74Pj4x6lgR8yz/fYwPMHYWBrhAuM36WB64ZhMAhxiL1H4P9/5Te3x8r5luviu11XwEqNY+JHSGIEu533L6b/AMEEZsYdM9e8ENziuxR7jDKPMGrUGfOHLvaZhxnzCfXwIz0vGMunGjUXGdD+UphXDNsvTmZCLPQbq9fZ24Jnpf5UrJuf9ycM4skRhhWbCsOD2ZS7H1lgG2Tha/JHzer/LrOZSGf27c/MuIZr3n8Pxs+OjZXJUyn4mugH7dIeNBU/7FZ8/35Ef/IoABafg/EeAOA2490TxN4GiL+vimgKSD2HvwpKwTvzsuFKFOlv/6kmGxRYQPNnUXDYU/lixXg3KLNdZfW6IhaVkknvkDDwjg2D6VMJA+C9nSjwbRSw3qBze0/eewvbPbcVfLRVwcsD2G55JPd6PHesa/eO0r2jcp9+ptK9f8KaPrmE1VRcxoKDKy7dL1n5mxXXhYp7kX2QYP8PfPVyjRySXPxjk4t8KslF19h2Fglpk13C7s/9Sqx8FMROH7XE2s9PmOfujdh2id0TtcEGaqFALkSxQMmqOJbbBfIABAfHInj2VBDMeqzDBmuS6G/gemd5vBvA7x8FwA9m3DZu60x7T2rI9sPt4LZs+w59TU3zvZjIzB4XACyyWSGiqTok8w6Oxe37p/h5BiFtqNYvFLzNx5z7IXj25FKw69oU7OHDP/TYE8bhBoxfimshdcY9ryYJiMFV2KP6QScf6Y6LiXsIjMP9Ybzz2wSanX4miOrvdd6JUbe3+al38wK58wyykyX02198Md8vq78s/c3/AVBLBwgDIVI5nQkAAMktAABQSwECFAAUAAgACACLnNpA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAIuc2kADIVI5nQkAAMktAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAANAoAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
<ggb_applet width="1000" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIABOg2kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAToNpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa4XLjthH+fXkKDJvJpFNbAgiQFO/ky/iSXusZJ3dTX9NM56YdiIQonChSIUFbvrkXyFPkTx+j//ImfZIuAFIiJcsnWbYn9tgGASyxwO63ux8pDb9ZzFJ0KYpS5tmJQ3rYQSKL8lhmyYlTqfHxwPnm5RfDROSJGBUcjfNixtWJw7SkjE8cdzxmGPujY+5H+JjFjB+PhCDHAY2Yz/iAiiByEFqU8nmW/8BnopzzSFxEEzHj53nElVE8UWr+vN+/urrqNap6eZH0k2TUW5Sxg2CbWXni1BfPYbnOTVfUiLsYk/5P35/b5Y9lViqeRcJB+giVfPnFs+GVzOL8Cl3JWE3gwNT3HTQRMpnAoQJ34KC+lpqDReYiUvJSlHBvq2sOrWZzx4jxTM8/s1coXZ7HQbG8lLEoThzco17IGPUpwTT0KPEclBdSZKqWJbXOfrPa8FKKK7usvjIamYNUnqcjrldEnz4hF7sYHemG2MaFxvftFLZjmNrGtQ2zjWdlmL2dWVFmZZiVYdRBl7KUo1ScOGOelmBCmY0LcN+yX6rrVJj91AOr05MjOFMpP4IwxYATa3MYx/hI//nwx/REv3tI0tKqimpPpY1KQr09dLoHnZQ2SllINnW63pZz+rcotQff6aDtc4Iq82v+NjTS2465rtH2D1Pos0c54rDfxMqwDg9UTrRsDR8lZqUOGBoiL9S4J8iD4PADgLmHSAhN4CIIB0Q8xDzokgHydRsgGsAEQxQNkJYjFJno8AbwjwVmMR95sJgeDSAoEQFFDHkUERNUDEEoIROYEKQuBQnPQx7cpNUTVy9BfcR86NEBYrBHHZMBAUEKN0If1LuIEkT1zSRAro98vR5hOtb9gd46LOkiHyOf6AUhrCGkbTiD/ABRfRq/NpfM5pXqmCiaxc2lyudLX4A0JKRV2rMJqpMVnw1TPhIpVIoL7UmELnmqI8IoGueZQo0TXTuWFHw+kVF5IZSCu0r0gV/yc67E4jVIl41uIxvlWfm2yNW3eVrNshKhKE/xcs95SlrX7nLX0KGtCdae8FoTfus6uFFvDjOoKgXoz4uyEedxfKYlVqkBLPkmS69fFYJP57nsHmPYN0VnKKoolbHk2Y8AVq1F2wWtapAGeVODPJ82O8mL+OK6BAijxT9FkZ84odfD7R+IsWs742LanQKHlxHXwefh7gykrOstU8RqFpdLD/GFWB02KXRktzpn5as8XQ2Z83/L56oqDH0ATYU+1GmWpMJgxKRbqM3RdJQvLupsbdd6dz2HHrY7GCXG7ghyg+tBvUzqdmRbI6O3tpTCRgYbCdygTcbLeRK6RsK0I9saKYCv3Vp9VNIck+BGjSxNRsNOHTdNttLg15W+yqQ6bzpKRtP6qMTe8EM1G4klhLprkvtac9hfw9hwKopMpDWkwZlVXpU2Qltoj0UkZ9C1E7VJuHbX32EDdjQWSSGajaeGmlmDmVncBuvGsFnqdZHPzrLLd4CFtQ0M+80uh2VUyLnGHBpBGZiKFapiWXKoInH7Ph2DcPRIVwswj9Kmgeis1CQHZ79Ocx+8FUNmgWEdf6mYAd9CymDMwHRp67eGyGmjonz0AZLbsv7Z+ZXXQGksjUYT9bUwt5Nw741gNLDl6XzCNROszZLya1F0DGWUfZ/H6+YD71iNSsz1Atr/cyEsdOxx4GIOC5qI6yQy8EiJFvquAELeqAd6+9GyfMtytSV0GHZStx1d8yUAzBrxc+b8N9k0aBfdK4v+jo1GaI8OjNlIL7gfs0X5bMazGGWGA51D4nFWJZljDUXEiTWhNU+lmqnELlYvseEDncWW9k12RvQ2++O7W39lwWNS4464PX/QLTPanOCXwPPC1s9gPSUrYAtTeCYqTd1QdYUwF3+VcSwMU7Ql6+fM3lLaPCln81RGUm1AdzEvYD2Njtoa78RCwYZg4sT56ucqVy++RG/ReyRLBf+FzOD/WACUivcI7iigq0mPGMnEdN5W2VRL8moM/5Pel3YRo7jrJOA5qzixam93VJeW7J97DnCjLM/5O/GTHVsBxrC6UhRyvCTxpohjpzF8fT88dxfqrY4IpLHAemyDuABCgLPQDgBoO9A+7zd3zW8/XlygPezvHmr/EfrfL7+iB42ne3YEpDXciTlvb090bDqChy7Bs6XJuDEpbLYSG2TjcTLSm/G4FEqf1XVt/qGef2vGAsKqHWvGLqJJIZVCZL9jjw489pbwvnd4rYzj07A2Dt3ZOK+ACf723yyugKVtGujGCKVrEfrnUidVoL9KikKnzURkvFom2gtV8Emqs+rpv/6kk7AeTOD6COL6DwTDCmUe81Kv8umrVL3QckfJJ3SCQqxFZap6uycAemgCeDJxz4DNrJVgG/Z+N+y3RX2Xu7wpgGgnecbT7Swm2eAw0R4cJvociWy55oFZzA3s5bphN2CssIfJxrPk/ROXrgOMY9fsHm0Y/PR2g3eJ++mBz0E3OIO49tHdtL8PWo97lAZ+yDzfYwPPH4SBrREukHyXBq4bhsEgxCH2HoDy/41f3xwrpxuui293XQErNY6JHyCJEex2XrqY/j0EE5gZd8xcE0Fwi+9S7DHKPMKoUWfMH7rYZx5mzNdvyR7oAcFYPtWoOcuA55fCvFfYfFsyFWKuX1O9yd4VPCv1R2Hd/Lw7YRBPjjAs2VQY7s2m3N3IAlsjC1+TPx5BUf+HzKYindpXPlPjGr6Q+UzP7cn42aGxMn4qBV8T/aBd2oOm4ofdiu/fjeiPHwTA4jEY7x4AbjPeHUHsrYH4u6qIJoDUU/iroBS8N28XLkWR/vafarxGgQU0fxEFj/VF+WLJeddIs11n+YYiFpWSSW+fQPAODYTJUwkEYL6dOPBtHLDeoDO8I/O9ge+e1m/tNmp4uQffLQ9kXw/njlX13lK8t9Tu40cq3runrMmTS1lNzWUs2Lvm0t3Slb9ec12ouWfZRwn2/2jKLOSYsx7ZJ7n4hyYX+VSSi66y7SwS0ia7hN2fuxVZ+SCInTxokbUfmjDP3Rmx7SK7I2qDNdRCgZyLYo6SZXEsNwvkHggODkXw9KkgmPVYhw/WNNFfw/XW8ng7gD88CIDvzbht3NaZ9o7kkO2G28FN2fY9+pqa5jsxlpk9LgBYZNNCRBO1T+YdHIrbD0/xEw1C2lCtXyl46w86d0Pw9MmlYNe1KdjD+3/ssSOMwzUYvxJXQuqMe1qNExCDq7BH9fv8/EJ3XEzcfWAc7g7jrV8h0Oz0kSCqv855K0bd3voH3c0r5M4zyFaW0G9/38V8raz+jvTL/wNQSwcIL1U0zJoJAADALQAAUEsBAhQAFAAIAAgAE6DaQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAToNpAL1U0zJoJAADALQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADIKAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
  
 
=Das Innere eines Dreiecks=
 
=Das Innere eines Dreiecks=

Aktuelle Version vom 8. Juli 2012, 20:43 Uhr

Inhaltsverzeichnis

Dem größten Winkel liegt die längste Seite gegenüber

Teil 1: Konstruktion


Teil 2: Der Beweis

Aufgabe 9_3_SoSe_2012

Das Innere eines Dreiecks

Seien ABC drei nichtkollineare Punkte der Ebene \epsilon. Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden:


--Flo60 22:05, 15. Jun. 2012 (CEST)

Was ist das denn?


--Flo60 21:29, 6. Mai 2012 (CEST)

TSV wunderbar