Benutzer:HecklF: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
HecklF (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Bild:Bild1.jpg“) |
HecklF (Diskussion | Beiträge) |
||
(7 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | [[ | + | =Dem größten Winkel liegt die längste Seite gegenüber= |
+ | ==Teil 1: Konstruktion== | ||
+ | <ggb_applet width="800" height="457" version="4.0" ggbBase64="UEsDBBQACAAIAE2t6EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAE2t6EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnbjuM2En2efAWhh32alkmRoqRZ9wTuBgY7wCQTbE+Cxb4sKIm2mZYlrSTfGvmpBPmOfNMWSUmWL+2+TNLJrDE9lMgSi1Wn6lTJHn+9WWRoJataFfmlQ1zsIJknRary2aWzbKYXofP126/GM1nMZFwJNC2qhWguHaYlVXrp4JhS4hNyEfpRcMGmjF6EkeQXHqUJn8ZkypPAQWhTqzd58a1YyLoUibxJ5nIhPhSJaIziedOUb0aj9XrtdqrcopqNZrPY3dSpg+CYeX3ptBdvYLu9h9bUiHsYk9G/vvlgt79Qed2IPJEO0iYs1duvXo3XKk+LNVqrtJmDwTT0HDSXajYHowLGHDTSUiV4pJRJo1ayhmcHt8boZlE6Rkzkev2VvUJZb4+DUrVSqazAQS71fS/0SBQFBPtc6ygqJfOmlSWtzlG323il5Npuq6+MRnioKYosFnpH9NNPyMMeRq/1QOzgwcC5XcJ2DlM7eHZgdvCtDLOPMyvKrAyzMow6aKVqFWfy0pmKrAYXqnxaAXz9fd1sM2nO007srCevwaZa3YEwxRAn1ucwj/Fr/cfhj+mF0b6RZKC1qZZPVNqpJJTzx+v0PstS2illETnW6fn32MnPKLWGP8pQf+BbUGX+mb8jjfScmYca7f3nKeTsRUwcj7pcGbfpgeq5lm3Dp5GLWicMjZAf6bgnyIfk4AGEuY9IBEPgIUgHRHzEfLglIeJ6DBANYIEhikKk5QhFJjv8EP5jgdmMIx8207MBJCUioIghnyJikoohSCVkEhOS1KMg4fvIh4e0euLpLShHjMMdDRGDM+qcDAgIUngQ7kG9hyhBVD9MAuRxxPV+hOlc56E+OmzpIY4RJ3pDSGtIaZvOIB8iqq3hrbtUXi6bPRcli7S7bIqyxwKkgZB2tGcJao8VX40zEcsMKsWNRhKhlch0RhhF0yJvUAeiZ+dmlSjnKqlvZNPAUzX6UazEB9HIzTuQrjvdRjYp8vq7qmiui2y5yGuEkiLD/ZmLjAyuvf7UcEMHC2y44A8W+OA6OKm3gBW0rCXoL6q6Exdp+l5L7KgBPPkxz7ZXlRS3ZaH2zRiPTNEZy2WSqVSJ/AcIVq1F+wXtapDmq64G+UHUnaSo0pttDSGMNv+WVQG+pS4Oo4BF9hNCYd22K0HksjCEvLAfnUCJ0LnHsctp4IPk/kQniZlVJ1c9LGIjdxbOKp3Og5v39VWR7aaM0deibJaV6RmAESttySSfZdIEhuFYKMjJbVxsblqKtnt92pZwh+0J4plxNgJC8Hw48KwdYzsaGX20XgobGWwkcBdiKu3XSeQZCTPGdjRSELP2aK2ppDOT4E6Nqm1347TJ0lGUjnhd3pe5aj50N41KbltTiX3g2+Uiln3c7O9Jfq89x6ODwBrfyiqXWRvHAOayWNY2LQchnspELeDWLrQuERqu7+EAdjaVs0p2B89MP2YdZlbxMEKPps1W76pi8T5ffYJYODjAeNSdclwnlSp1zKEYuP9W7qIqVbWA0pEOn9OJB6YnukSAexrtGkjJZTMvAOx3WcEBrRToBKaN+GIh8hTlpuS8zxvwHXCXs6NBAYSymQAssAvwydZcGhOKZdMJTOyZ2910MmdyAc0bakzsmvDvMZyY3TVYqIh/BG19MbXru2iA5T5Oda2c2SG2g8jKudCtY+vSTGxltedks+E3RXoCkRpt7KNoe+lcmIs729rb1lafWKfhHl/b2QMsIcCssUfu/M6YfcqVh/67eor/rp7lP+JZtjBjyxbPdqHIITlMiAHzljb5Silt3tozw0UJ2xm62ysdnfO5S4zzfy/fn3PZ9bNcNqTOP91dvgsdgvaX5+q3sT8gWLPtrMgPwvXKZv01DF6b5nuBC5SaQc0iVkxYsRgG6DCSh4LaKuww6LfaLz4NNEO38MpXmwrZtLXQXPxDpak0jfDoPLwDhw7xhVc4W0AxO4ExeQrG9wdiLWf6rj+LeFYonj/qswnwwgaTpcAoiIYf3wZZ4HqYDKbDw+7g8QDJ/+b2kdqWbLUoM5Wopo+qTMd/X4QgX47r8q2UpW6IPuafKpHX+psWKzOo949EIn5xJD5Op7VsjOP12+121/U/BNQOJ8sDd23R+n/BIvlLZUXXF5gSdTfc60vw9D6vX6sqyeQBrV9bvr464vP0PGdDd6mSHpT0AdDuod39N5Jn43USi1099U+DoWYyX8FR4X0VoQ1uv83d4q4P6WY2pI8D0k7dkUHNhXpeqQ2adPKTTmri6Th0PZ/ukSaa0FbFhPVZPPE7Cj4ZKfprBDVVyXmA72vaU4txfNxs/k2URf13u/ykxrN98EXb9wFnUsuA/LGU6WMWhTjwQ0JC0vIncWkQ8YgzSmHKg5L3B/RSNy27neylOi8ewiLPQ3HImPJPTb4BWZ7yqIaJun7kQ+vgMRKC+0nAjKdDlxFOWOgxWCARDr5YZjVf3pzH2LTD10dQ//brf8h5tM3XAz2WRt785iGyZQeEG/IoDMMA8zDwMHj+oS74nvdC3H7/g73PbYKfh6Kokl2++d0bU5YV63/KaSY3xs2fg0lf7Awa96Uf+Nh7Iibeg5jwl8dkwJehTcToC0fs+K3zt1+ehNQvhzgR16OcUuZHHqdARSF7Hk64RemYTh+NUftS/+Vh1DLd5F6O+/lJGP18nEs+pozp34QJjijlL4zRXwGF0fDbXPNLSfuz/9v/AVBLBwhJg4JF6gcAAJMgAABQSwECFAAUAAgACABNrehA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAE2t6EBJg4JF6gcAAJMgAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAgQgAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
+ | |||
+ | |||
+ | ==Teil 2: Der Beweis== | ||
+ | <ggb_applet width="1200" height="500" version="4.0" ggbBase64="UEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vxbb+PGFX5OfsVUDRZbYC3PnUPHTiA7CLqoc0F2mwTFAgFFjiSuKVIhKVs2/F/60j+QoI99y3t+U8/MkBJ1sWxaVrqud63hDA/ncr5zvnOGo93jz2fjBF3qvIiz9KRDuriDdBpmUZwOTzrTcnCgOp9/9vHxUGdD3c8DNMjycVCedLiRjKOTDu4zRgQhB0r43gEfcHagfC0PKGOhHPTJQIZeB6FZER+l2dfBWBeTINRvwpEeB+dZGJR24FFZTo4OD6+urrr1UN0sHx4Oh/3urIg6CKaZFied6uIIult66IpZcYoxOfzxq3PX/UGcFmWQhrqDzBKm8Wcff3R8FadRdoWu4qgcwYKZoh000vFwBIvyOO+gQyM1AY1MdFjGl7qAZxtVu+hyPOlYsSA19z9yVyiZr6eDovgyjnQOCuoyIaiixPc9goU0Y2R5rNOykiXVmId1b8eXsb5y3ZorOyI8VGZZ0g9Mj+j2FlFMMXplCuIKCoWU7hZ2bZi5grqCu0I4Ge4e506UOxnuZDjroMu4iPuJPukMgqQAFcbpIAf45vWivE60nU/VsFg9eQVrKuIbEGYY7MTpHNoxfmV+Jfxyc+NweZGkMWqZT1sOWg9JmJQPH5PutFJWD8p9sj4mFXesU24Z1C38QQsVDd3CUPav/V0bkW1b5uqIrr7bgJL/IUs8Pqx95bhyD1SMjGxlPqUeF8ZhmI+Eb+yeIAHOIT0wc4GID4VHEbgDIgJxAVWikDSlh5gHNzhiSCEjRxiy3iEUfHDPdiaRgM5MqwdOiQgMxJFgiFin4ghcCVnHBCelDCSEQAIeMsMTarpgEnEJNaYQhzkan/QICDJ4EOowPEWMIGYeJh6iEknTH+HG16UyU4cuKZIYSWI6BLcGl3buDPIKMbMaWakrTifTcklF4TiqL8tsMscCpIGQFrTnCGqJFT86ToK+TiBSvDFIInQZJMYj7ECDLC1RDSJ1bcM8mIzisHijyxKeKtD74DI4D0o9+xKki3psKxtmafFtnpVnWTIdpwVCYZbg+ZyzhDSu6XzWUGGNG7x5QzRuyMa1t3HcDO6gaaFh/CwvavEgil4biQU1gCa/SZPr01wHF5MsXl7G8aENOsd6GiZxFAfp92CsZhSjF7SIQYav6hgkPL+eSZZHb64LMGE0+4fOM9At62Lle9x3PwoC63V1x/O7XCnwC/djHCgMjO9J3JXMEyC53FBLYu6G05dzWIKZXqxwmBt3blReF6dZsmiyiz4LJuU0tzkDMGJuVtJLh4m2hmE5FgJyeNHPZm8qinZ9vb2eQA27GfSHVtkICIEKmPCwKvuutDJmanMpbGWwlcC1icXR/D7xqZWwZd+VVgps1k2tWiqpl0lwPUxcuOymUzlLTVHG4k14n6ZxeV5Xyji8qJZK3ANfT8d9Pbeb5T7JU/V5fLhiWMcXOk91UtkxgDnNpoVzy4aJRzqMx1B1NyqVBAauv8MEXGukh7muJ57YfMwpzN7FTQtda7ZdfZln49fp5VuwhZUJHB/WszwuwjyeGJtDfeD+C72wqiguAggdUfM543iw9NCECFBPaVQDLjktRxmA/WWSSUArAjqBZis+HgdphFIbcl6nJegOuKuzoMEACGXWA1igF+CTa3tpl5BNy1qg5+Zc9WacOdFjSN5QaW3Xmv8cw57t3YCFsv57GG0eTN39hTXAYqLYrsRSSCU8qobvv58bsQmkQ1f0XREkk1Fg8spK30lwrfMlBOxoX2XRBrgKNHOPouuTzoG9uHF5v8t7zXKMjy6RuWtdARqsz2liTdffWp1s0vOqck/bKPf06ZVLqOMZW1Y882j9Bim4lRu11BPnthOtnce7BcHFBLqzRLkUdGpkZJdYZJ4KmG36PHt6fTYZ+X+uS9GFxMMok3bNJm8PZp5cD7N0xdBPHZmcQUEr9lgyeWDqBEIhcWKBE+tDAYlLeJ87uAFrgOZdLce0EnKsC9hJFjbwllWItRd/jaNI2/z6cDv2yxnRw8CHbaML2phvMADSxgDuNuFCD01tPtHg6Y14+zoeTboHzgwd7fqe3/wRzjy9LsWk0axW05WHQ6t/Tt0jhcsh4vEkicO4nNtjYjxnHhVBLeuJwoXWE5OhfZO+zYO0MK9+nEwjAXkgTP0PC6ZvBoNClxYVsxe/XuxR7kNxAaKjl5sqiv6/ABV+WEBt86c6i7Ex86bZ13OAYTmWnMV5mOiVUHLmYsTpWgyJtscJQCYO54hF9yB6L9UPt8d5/HgwNwK1CPBiM1LxUKeXMDPYlyM0w9Vb62tcZ011y4zMjYRUTTekkQRAgpHHM9Sr5Xu1VI8aI+1SwZa4GPVYNUSPz/2/J2pm32hG5nVJPIjD7ejftTmJnAH01/PmF8EkKz51t1vl0NWDuzn5Bot49DalQcXMEat8KBMLzH2FPaEIUaSiZdJlni99yRmDJgphdg+Z35uKNDdmfrWKVzHT23FaJWK9q9uO9+a2DQ7epG6DIesKX0AuQzlRgA3xuIVBdTmRhCvK4QbxsfdsCdu+3tpuADazP1uzg9///RPZbgr2BcocaCtv+oCZTWsgukr6SikPS+VRDJq/L6G/z6U3WAvB1eszTHfN5x8HcZCHC08V9c4wSbKr7/Qg0TOLwS6AzQOsheouxwUAaEvA6L2AyQ8MsAYNK+fC/jOHc33r/fuvrWD8dRVE0qVMMsaFTyUDElN8VxDvfIVC8DpLPxjA6rXH8wOwItDendT5SysAf1n3QoEZ5+YwnmCfMfkhAfghQKRnkxyGMausFPBWz0rIyOHGSefFz9Os/PQT9EOco3foKksSncJFX1/puNDpEbp9Z9d6i14My0+h1tclVE5cbd7cv0WfuK7s8MsQljBeZ3nwB+dBe0h14uI8eKt/XNZYdbpZ6DwezA+z7bkW7tTpSPV8UQZ5ad+HI+OafldIJoTC1KceZcSzjiq6ElJYAlUqOKRKSy8r74eHrsBzavEAYKJpHo6g/MF8EaWY5NNw9Kc2qqe7pqCD54ILgTyWKsKpFBj2epDSVsAQzHxCIZdlkK9K0Q4YtgJML02D0VgfASTWG5L23sB23sz/RJ4TKJ4nCSROEnYRsJOwoPCuxD40Ug6RmPtC3gnKkir7WZboYPHyfLAaHBqqe0g82F1/i4gtiTv1kWqbesNgYuG0bc7JwbH1Ubt1D9d3Ey1XvmdfX1eLyWcfqpfax9opZbQXlTyhr21QCtv+nqSplL+5k/ML2/JFrmMdXqDe6VlLy9mLku45RXycityL4cX3PR7qT0U4yuOyRGTdfjYyPF9l+H6ZB0ObFV1m5vP27PQWimA6sJXe7RGqtpltWJ9/uK9wn57zOWdCUU9Kzny/2sqwLlA+UD31PelhodjjOP/9ftx8fxZMaZuIMMx/+08aTdPhg+1XbM5QwFZfNvP1v7yClt4szsbWsM3nOWxOgqSNEYtdjfj9czJiiTEk8oQITD0lq68hcEU8jypmN6HCb5dNyhWsbt9FOimDn2idSVbbrRaQyF0huXhGkAgqsTnQIZ7gQC/V12x8yYXwIbu0n3fnkhsh8VYgeUmsp5zr8Tgw+y7yyu6+0gudBJFTXxFYN/rkxZ8Jhie+0+EotfEituHiuzbwebvClzwb+GhXeYoxxZX0YYdWH9pDWJDcJ5wLLKnyuPe4uHCxl7iQ7i8uMLz15d6WzIa1zIyTvajmyXijoRrsjp4Y81qoZhEyNyhmo8+rFZ+vWJigd7DUYV2lbfxYfbhHfXugYewLrgSXEvwW136saB0rqc8Ib0fD/mYaPg2KuLiy7FsE5U0bRPxdEXky3/8jmJVQ5lEPSykUp/UxulIKN/7c/eprK32M90IfT5YJrtMHJAmPZFbaklnTvajmyahgg2rq866WzLpBMZuPGfBahlsfJ7j8tmJas6GephF8Ftk4LqFck3SZcKtjBryry2fPxuU3k7D5qpTwILvyzNEY7MB93PJ9N1k9KHpJLRG/ZFCAm1wF4Uibo6Pe9Ld/6nRBza/m+bD9Hgbo9jIuf/uXgda9LDmp3pnUwLuqAdtdtQG6xYHSZqAnzwno5qZH1ThL2O4oLikB2ueeVI/j9mwvBPZke5ImgbmVM8Ueye28JbdP9qKaJ2OYpmrcESSn4lHcvkExm6lh9ZCycSYJ/nwzNbTwfZYH0wJmdmO6buPTO59UPhuf9rvc94RPKfex+R5R9Z1J0vU4xsz8BwOeIEypO1Pow+Y/o7P/RLX6/xY++y9QSwcIAGqecGIMAAAMQgAAUEsBAhQAFAAIAAgA76zoQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADvrOhAAGqecGIMAAAMQgAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPkMAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
+ | |||
+ | =Aufgabe 9_3_SoSe_2012= | ||
+ | <ggb_applet width="1000" height="500" version="4.0" ggbBase64="UEsDBBQACAAIABOg2kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAToNpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa4XLjthH+fXkKDJvJpFNbAgiQFO/ky/iSXusZJ3dTX9NM56YdiIQonChSIUFbvrkXyFPkTx+j//ImfZIuAFIiJcsnWbYn9tgGASyxwO63ux8pDb9ZzFJ0KYpS5tmJQ3rYQSKL8lhmyYlTqfHxwPnm5RfDROSJGBUcjfNixtWJw7SkjE8cdzxmGPujY+5H+JjFjB+PhCDHAY2Yz/iAiiByEFqU8nmW/8BnopzzSFxEEzHj53nElVE8UWr+vN+/urrqNap6eZH0k2TUW5Sxg2CbWXni1BfPYbnOTVfUiLsYk/5P35/b5Y9lViqeRcJB+giVfPnFs+GVzOL8Cl3JWE3gwNT3HTQRMpnAoQJ34KC+lpqDReYiUvJSlHBvq2sOrWZzx4jxTM8/s1coXZ7HQbG8lLEoThzco17IGPUpwTT0KPEclBdSZKqWJbXOfrPa8FKKK7usvjIamYNUnqcjrldEnz4hF7sYHemG2MaFxvftFLZjmNrGtQ2zjWdlmL2dWVFmZZiVYdRBl7KUo1ScOGOelmBCmY0LcN+yX6rrVJj91AOr05MjOFMpP4IwxYATa3MYx/hI//nwx/REv3tI0tKqimpPpY1KQr09dLoHnZQ2SllINnW63pZz+rcotQff6aDtc4Iq82v+NjTS2465rtH2D1Pos0c54rDfxMqwDg9UTrRsDR8lZqUOGBoiL9S4J8iD4PADgLmHSAhN4CIIB0Q8xDzokgHydRsgGsAEQxQNkJYjFJno8AbwjwVmMR95sJgeDSAoEQFFDHkUERNUDEEoIROYEKQuBQnPQx7cpNUTVy9BfcR86NEBYrBHHZMBAUEKN0If1LuIEkT1zSRAro98vR5hOtb9gd46LOkiHyOf6AUhrCGkbTiD/ABRfRq/NpfM5pXqmCiaxc2lyudLX4A0JKRV2rMJqpMVnw1TPhIpVIoL7UmELnmqI8IoGueZQo0TXTuWFHw+kVF5IZSCu0r0gV/yc67E4jVIl41uIxvlWfm2yNW3eVrNshKhKE/xcs95SlrX7nLX0KGtCdae8FoTfus6uFFvDjOoKgXoz4uyEedxfKYlVqkBLPkmS69fFYJP57nsHmPYN0VnKKoolbHk2Y8AVq1F2wWtapAGeVODPJ82O8mL+OK6BAijxT9FkZ84odfD7R+IsWs742LanQKHlxHXwefh7gykrOstU8RqFpdLD/GFWB02KXRktzpn5as8XQ2Z83/L56oqDH0ATYU+1GmWpMJgxKRbqM3RdJQvLupsbdd6dz2HHrY7GCXG7ghyg+tBvUzqdmRbI6O3tpTCRgYbCdygTcbLeRK6RsK0I9saKYCv3Vp9VNIck+BGjSxNRsNOHTdNttLg15W+yqQ6bzpKRtP6qMTe8EM1G4klhLprkvtac9hfw9hwKopMpDWkwZlVXpU2Qltoj0UkZ9C1E7VJuHbX32EDdjQWSSGajaeGmlmDmVncBuvGsFnqdZHPzrLLd4CFtQ0M+80uh2VUyLnGHBpBGZiKFapiWXKoInH7Ph2DcPRIVwswj9Kmgeis1CQHZ79Ocx+8FUNmgWEdf6mYAd9CymDMwHRp67eGyGmjonz0AZLbsv7Z+ZXXQGksjUYT9bUwt5Nw741gNLDl6XzCNROszZLya1F0DGWUfZ/H6+YD71iNSsz1Atr/cyEsdOxx4GIOC5qI6yQy8EiJFvquAELeqAd6+9GyfMtytSV0GHZStx1d8yUAzBrxc+b8N9k0aBfdK4v+jo1GaI8OjNlIL7gfs0X5bMazGGWGA51D4nFWJZljDUXEiTWhNU+lmqnELlYvseEDncWW9k12RvQ2++O7W39lwWNS4464PX/QLTPanOCXwPPC1s9gPSUrYAtTeCYqTd1QdYUwF3+VcSwMU7Ql6+fM3lLaPCln81RGUm1AdzEvYD2Njtoa78RCwYZg4sT56ucqVy++RG/ReyRLBf+FzOD/WACUivcI7iigq0mPGMnEdN5W2VRL8moM/5Pel3YRo7jrJOA5qzixam93VJeW7J97DnCjLM/5O/GTHVsBxrC6UhRyvCTxpohjpzF8fT88dxfqrY4IpLHAemyDuABCgLPQDgBoO9A+7zd3zW8/XlygPezvHmr/EfrfL7+iB42ne3YEpDXciTlvb090bDqChy7Bs6XJuDEpbLYSG2TjcTLSm/G4FEqf1XVt/qGef2vGAsKqHWvGLqJJIZVCZL9jjw489pbwvnd4rYzj07A2Dt3ZOK+ACf723yyugKVtGujGCKVrEfrnUidVoL9KikKnzURkvFom2gtV8Emqs+rpv/6kk7AeTOD6COL6DwTDCmUe81Kv8umrVL3QckfJJ3SCQqxFZap6uycAemgCeDJxz4DNrJVgG/Z+N+y3RX2Xu7wpgGgnecbT7Swm2eAw0R4cJvociWy55oFZzA3s5bphN2CssIfJxrPk/ROXrgOMY9fsHm0Y/PR2g3eJ++mBz0E3OIO49tHdtL8PWo97lAZ+yDzfYwPPH4SBrREukHyXBq4bhsEgxCH2HoDy/41f3xwrpxuui293XQErNY6JHyCJEex2XrqY/j0EE5gZd8xcE0Fwi+9S7DHKPMKoUWfMH7rYZx5mzNdvyR7oAcFYPtWoOcuA55fCvFfYfFsyFWKuX1O9yd4VPCv1R2Hd/Lw7YRBPjjAs2VQY7s2m3N3IAlsjC1+TPx5BUf+HzKYindpXPlPjGr6Q+UzP7cn42aGxMn4qBV8T/aBd2oOm4ofdiu/fjeiPHwTA4jEY7x4AbjPeHUHsrYH4u6qIJoDUU/iroBS8N28XLkWR/vafarxGgQU0fxEFj/VF+WLJeddIs11n+YYiFpWSSW+fQPAODYTJUwkEYL6dOPBtHLDeoDO8I/O9ge+e1m/tNmp4uQffLQ9kXw/njlX13lK8t9Tu40cq3runrMmTS1lNzWUs2Lvm0t3Slb9ec12ouWfZRwn2/2jKLOSYsx7ZJ7n4hyYX+VSSi66y7SwS0ia7hN2fuxVZ+SCInTxokbUfmjDP3Rmx7SK7I2qDNdRCgZyLYo6SZXEsNwvkHggODkXw9KkgmPVYhw/WNNFfw/XW8ng7gD88CIDvzbht3NaZ9o7kkO2G28FN2fY9+pqa5jsxlpk9LgBYZNNCRBO1T+YdHIrbD0/xEw1C2lCtXyl46w86d0Pw9MmlYNe1KdjD+3/ssSOMwzUYvxJXQuqMe1qNExCDq7BH9fv8/EJ3XEzcfWAc7g7jrV8h0Oz0kSCqv855K0bd3voH3c0r5M4zyFaW0G9/38V8raz+jvTL/wNQSwcIL1U0zJoJAADALQAAUEsBAhQAFAAIAAgAE6DaQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAToNpAL1U0zJoJAADALQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADIKAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
+ | |||
+ | =Das Innere eines Dreiecks= | ||
+ | Seien ABC drei nichtkollineare Punkte der Ebene <math>\epsilon</math>. Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden: | ||
+ | <br /> | ||
+ | <ggb_applet width="750" height="407" version="4.0" ggbBase64="UEsDBBQACAAIAGSwz0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAGSwz0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VtbU9tIFn7O/Iouvy6W+35JmUwlJJkwQ5KpSnZra99kqzEKsuRIMuCp+fF7ulu+g8HmMgYKaEl91Jfzndsn2d1fr4YZurBllRb5YYtEuIVs3i+SNB8ctsb1aVu3fn3zS3dgi4HtlTE6LcphXB+2uJNMk8OWIVZQJeO26jPe5kartuF9006EjG1sKbdctBC6qtLXefElHtpqFPftt/6ZHcYnRT+u/cRndT163elcXl5G06miohx0BoNedFUlLQTLzKvDVnPwGoZbuumSeXGKMen89/NJGL6d5lUd533bQm4L4/TNL6+6l2meFJfoMk3qM9gw07SFzmw6OINNKc5bqOOkRqCRke3X6YWt4N6FU7/pejhqebE4d/2vwhHKZvtpoSS9SBNbHrZwRKhWRmtOqVDCKNVCRZnavG5kSTNnZzpa9yK1l2FYd+RnhIXVRZH1Yjci+vtvRDHF6MA1JDQUGilDFw7XMAsNDQ0PjQgyPNzOgygPMjzIcNZCF2mV9jJ72DqNswpUmOanJcA3O6/qSWb9epoL892TA9hTlf4FwgyDnQSdw3WMD9yfhD/uOjrLmyQLs9bleMtJp1MSJuXd56T32imbTar0+pxU3LBPuWHSsPE7bVQs6Bam8r/+b21GtmmbqzOG8/tNKPmTbLHbmfpKt3EPVJ052cZ8ajusnMMwg4Rxdk+QAOeQCsxcIGKgURSBOyAiEBdwSjSSrlWIKejgiCGNnBxhyHuH0PCPKz+YRAIGc1cVOCUiMBFHgiHinYojcCXkHROclDKQEAIJuMlNT6gbgknEJZwxjTis0fmkIiDI4EY4h+kpYgQxdzNRiEok3XiEO1+X2i0dhqRIYiSJGxDcGlw6uDPIa8TcbmSjrjQfjeslFfWHyfSwLkYzLEAaAtI87IUAtRQVX3WzuGczyBTfHJIIXcSZ8wg/0WmR12gKIg3XBmU8Okv71Tdb13BXhX7EF/FJXNurjyBdTef2sv0ir/4si/qoyMbDvEKoX2R4tuYiIwvHdLZqOGELHXyxQyx0yIVjde28BfSgcWVh/qKspuJxkhw7iXloAE1+zbPJu9LG56MiXd5Gt+OTTteO+1mapHH+HzBWN4vTC5rnIBevpjlIKDNdSVEm3yYVmDC6+p8tC4hVkJ8XfyD6TJoebJa7YMSqHzvnE3i5ByLB5IYuEma2FzOE4is73+ygdJ69cHJcvSuy+SW//6N4VI9LXz7A8kq3qbf5ILPeRny4hdzcP+8VV9+aaB3G+j4ZwRkOK+gNvN4RxAYqoHwYNG0vtF7GLW0mhb0M9hJ4am1pMusnhnoJ3/ZC66XAfMPSmq2S6TYJnk6TVj6i4VbjN9No5YzfZfpxntYn05M67Z83WyXhhi/jYc/OTGh5TPJQY3Y7KzbWPbdlbrPGpAHMcTGugocuWHti++kQTkNHo5LYwfVvWEC4mthBaacLz3xpFhTme/Gisa5d9kN9LIvhcX7xHWxhZQHdznSV3apfpiNnc6gHaeDczq0qSasYskiyeJ/zQdh632ULUE/tVAPeOa7PCgD7Y1ZIQCuByAKXnf9ldgj1Fqq9jXkznen6rS/knFJR0fsBwW2W/0L/HDXovtbevGXG2egsdsVes/MsnthySRd+vM9FsqohAMBvAxx95KtFgHhkbbCOsGI4GMGA3qmWYhUovUJXsISIQr6dHLbaNMJw9Fco5UMp67brfG0pPoerK4CBFQVN3aKzd/uls100JiMTFIYjSh9dYUfPX2Es4tprjEQPY2D9YjiM8wTlviQ8gTjcmlcoMXaeiWLijC0oZlxPO+IwVDPAmupdSJ9pNr5F88upP0mDllxWb6SLzbjg3VGZ67ZNIkdDJ45Wu1rAaZdFQrO1JFVD/XQOLLHymbRucqY/+JQmifW1c0jiP/NwSxUyRzocZWk/rTfD8Kc322Uc4jUA3m8GYNn2368jsJztrjd+QkPe9+0+OABECi2xwYpwZoxWlDQRhEVUEKyZwRJTAcfqEfzjbsB82AaYDy8EGAKlL4eyGUvGuTZMNZ4kKIMrRmoN/x8oK66Ckk0GRb4Cy/sQtz5AQ92Dm1WQoEDLoAImQSwJYo5cAHXpQQOspQ8N8JWP0ABV+e02VMMqprDNxr8xdODNoeNhoyV1qr82XrJtbOXmVFvZgTubLTK5e8i/2zp3j+sqUoororXiEDuIkCGDmgiMVRqllOZaYyO8bQodQfzAjMEtGlMuNwT/WxDcFPy9LWbOn47zGkiE9VX0Ojc4t3bkSNnX/HsZ55V78BtkFjjHHRGx+4PIqu51KGquQwog4YRHDGulNYUoAoH9pSDS2xtEVhUf6qBrcQJAmNERXNRMUmUY9L8YRPp7g8haePKIXIOTcxAagY9gTRTTWlCu+LMFZLk4+rgTY5MBDNf0QrNzYTS+SrM0LifLy1/CiURUEahHlTCSGkpCdqE84gyyCAW4GKXGsEent7/tv7LaEDeYkBRMFwzVWXFIxTKSQkjCoJ7nkuqnpbZHa7Xh6RbU9vS+1PbnU1BbFvFG1REF3rTwEyI6wXBdkIXr+8B5T9eQ+bQNtfr0QqiVgKBPMaQBo7DUzC0rpAKhIUEwpY2EavVhnp/tAsrxNqAcvxBQ3BNLTh1B4OAtHFMyLWElxHtYJpFcQPh/mLh/F8b7KYSz41sYLw1iZ0EsDYx3EBjvj8B4fw+M94+dGC/9JxjvjUGUYLoWRvk21nL32vFst9rx5nXuXjuKiBko1ok2ghMFdWKwTREJILVKYkYhkJjmkXubQ4AxDKxZCEJAYtPzzv2uHlchSfcGklXVh2ixBlQTxKEgopRKxowwQnD9fOv5VUQGe4NI+zrlT9aRCsUoI1BCCcKJFExhxl/OQ4gf+4PIqupl8xRiFaiGHwgCHAvcA2NwFSqeb9harpB+338eB4hIIrDmTGJwCU6a997gJERjgApiloAqyDz+W/A/dqsnn1RdlEREUgN2DeFECxa0RSNKMCRexsHWuX6UF1bXsN6jm17onm/Bes/vy3rLJ2C9BIx0ieuGZ2gQyOnSB66CkbaBA0MJtOl5/5MR3/M1cE624VgnL4RjUR4RopSmGgtOjZZNHasjpoQyRAtBMZNEPxH1XYfl8zawfH4hsLRxpDTWhHNlJIN4P/MrMoeKU/FkzPckhLTPtzBfFsSyIDYMzDcPzHcUmO+XwHy/7sR82T/BfK8JpILc+JGlR3rZm+1WQ25Y6D3KegJslmNFmdHEYP8tCv+ZPB5po4VRVAssXZnp7VOJyGD/8qQx52dbRa6CMtwfUNZ0P32/uIpVSMXCREpIoL/AfKFw0i8Hk3x/MFnVvZi+t1pDChCRGip7prWmTFDDCXkxiIz2B5G1ENV81HPVSULgksZEVDMpgBAzoZ7xE4nlKunL/tPfNqERaFxrqZvqdJpjSMQ1ZkQqoBguozxMDbRJXV/3X12gLUaZInhmxM1HNllEFWfaQPqlinDzGNrqFUVm43mtVnh9wZ1ju2bD9/lo+N0Z69fT08rW/qEwx8HDmdkYIeKRL/v8tU8f0Nt3B0f/2m7XP/dx10Jvteujg3db7rrcx12rrbB+d3Twdm3XncVv3vgvuDXf1n7zf1BLBwhfnNePhwoAAEo+AABQSwECFAAUAAgACABksM9A1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGSwz0BfnNePhwoAAEo+AAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAHgsAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /> | ||
+ | --[[Benutzer:HecklF|Flo60]] 22:05, 15. Jun. 2012 (CEST) | ||
+ | |||
+ | =Was ist das denn?= | ||
+ | <ggb_applet width="300" height="300" version="4.0" ggbBase64="UEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vptb9s2EP7c/gpCn2tbJCVZLuwWSYZiAdIXIN0w7EtBSbTNRhY1kX4L+uN3JCVZdtI0SdvBDRbUJSke73hvz52cjF9vFjla8UoJWUw83Pc9xItUZqKYTbylnvZi7/Wr5+MZlzOeVAxNZbVgeuIFhlJkE2/kT+OAZtMeGWWkF3DMe0k6Zb1wxKIwjmgWp0CJNkq8LOQ7tuCqZCm/TOd8wS5kyrQVPNe6fDkYrNfrfiOqL6vZYDZL+huVeQiuWaiJV09eAru9Q2tqyYnv48Ffby8c+54olGZFyj1kVFiKV8+fjdeiyOQarUWm56AwjYmH5lzM5qDUMAg8NDBUJVik5KkWK67gbGdpldaL0rNkrDD7z9wM5a0+HsrESmS8mnh+H5Nw5AdBHJEQx348GnpIVoIXuibGtdBBw268Enzt+JqZFQk301LmCTMs0ZcviPjERy/MgN1AYIgit+W7Zz51A3FD4IbQ0QTueOBIA0cTOJqAemgllEhyPvGmLFdgQ1FMK/Bfu1Z6m3N7n/rBTn38AnRS4hqIqQ/ud0aH577/wnwi+ARmY7CvJO5I1dXygUIbkZhG0f1lku/SlLZCh8FNmST8ip7RHUKd4vdSNOzYFkTZf/ZzQyK9S81DiW79fQKj4D9RcTxocmVcpwdSc0Nbh4/mC2USho5QODJxj1EIyRENIcxDhEcwDAmCdEA4REEISxyjyIxDRIewESCKYmToMEU2O8IY/guGllmEQmBmng4hKREGQQEKKcI2qQIEqYRsYkKSEgoUYYhCOGTEY2JY0AgFEaxojAK4o8nJIQZCCgdhDeIJohhRcxgPEYlQZPjhwOR6FJurA0uCIh9F2DCEtIaUdukM9DGiRpuoNpcoyqXeM1G6yJqplmXrC6AGQNrhngOoPVh8Ns5ZwnMoFZfGkwitWG4ywgqaykKjxonEPZtVrJyLVF1yreGUQp/Zil0wzTdvgFo1si1tKgv1oZL6TObLRaEQSmXut3eWOe7MSXtrWNDORtDdCDsbUWc+vFWuhB20VBzky0o15CzLzg3FDhrAku+LfHtacXZVSrGvxnhgq86YL9NcZIIVf0KwGinGLmhXhAxeNUUoHI6am8gqu9wqCGG0+ZtXErDK7/vdH0iTrdvBlPZH3R8oMiplJvmC0f5ODIfqrfCAX+07vmo9xDZ8p+ysMpndWZyrU5nvHln9z1ipl5XtHwAcK6PUSTHLuY0RC7dQnNOrRG4ua7R2vD5uS1j57gbJzNodATaQMASCekzcaGnM1Voq39L4lsJvok1k7T4eEUthx8SNlgrC112tVhU3amK/ESOURTTfq/OmQSsT/KbULwuhL5qFFulVrSp2B94tFwlvQ2ifJ/5RPMeDgxgbX/Gq4Hkd0uDMpVwql6GdaM94KhawdBu1SZhx1x9wAfc047OKNxfPbW/mDGZ3/W6w3nhsWb2p5OK8WH2EWDi4wHjQ3HKs0kqUJuZQAmXgiu+iKhOKQRXJuudMDoLqqakWYB5tTAPZudRzCc5+k8sIvJUBssBjS75YsCJDha0+54UG2wGMeTtEZIAtmxNwC3ABaNnaqVVBLnVDcOLuXHMzeZ3zBfRxSNvYteHf+vDEcjfOQjL5DNLauur2d9EA222cmrI5c0PiBpaXc2bayNqkOdvyas/IluFbmd3iEYU27ijaTryenVy7Nt+1uebGJg33oNs9PfAlBJhT9oY5P1i1bzPlof1OH2K/00fZD3ptl+dkhxaPNiErIDlsiAEIly75Ss5d3ro7w6QEdhbu9qpIY3zSD63xf5Tt7zLZ2aNM1oXOIzDXMLb2IvDa9NMN9tuvbzDcDyJrMNwPg5+S3fl2JouD/D5xMHkGA6nzei/ToQblUOSxI0scGYMBurP0WyjgBDY+aFntV2sNjeQVvC4r21Lounmwk99FlnH7EjG4270dg+5hSEith0NctxM7B+OHOPjrUaj4zKzaiyTfiMOHX/TRxaLnEm/bpOJ1l9sjrM//KdwR5RoYsShzkQrdhkxugrstyZAMN7uUK85L0x6+Lz5WrFDmOyhH0+l+7mlpdjyWbg0NdZkMD1t0sHsv7NODdv+puCE9Hje03ZGt1Nd1m/TrGPoBcP2bw+Gzr8E1cWTpJ1wDtp0AZGePgmzylCHbGOloYrjniv+2aQeeGmgfla39fhjf+BbGWJ7i20Ac93EcPRlXZMfjiF39bDuVJwjdp/eDbtpAN3GESQvdn/CjwJs+bfAmxxPHO/CGme/e4Wg/Dn+hQP7G283/8H0srsiOyRVP+wVo0P2O2v4qqP7Dhlf/AlBLBwifexFhuAYAAHUhAABQSwECFAAUAAgACAA6qqZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADqqpkCfexFhuAYAAHUhAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAATwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
+ | <br />--[[Benutzer:HecklF|Flo60]] 21:29, 6. Mai 2012 (CEST) | ||
+ | |||
+ | =TSV wunderbar= | ||
+ | <ggb_applet width="566" height="607" version="4.0" ggbBase64="UEsDBBQACAAIANGQVkAAAAAAAAAAAAAAAAAxAAAAMzUwMTM0MjJmNjI3ODBjZjFkYjc2ZWYzZTM2NzViYTFcdHN2X2xvZ28gMDAxLmpwZ52XZzjcXdSv/0KUKINIDIPRRe+9TES0IDJEFyWIFr3XiUcIokZCRIIEQZQheonRRUSU0UcdnehtmGFez3u95cv5cM5Z+9te69rXundZv72Ik8QFgP6Blq4WQHINAEiuBkDEABoAJTk5Bfl1SgoKCioqyhs0TLQ01NQ0LIw3QUzsrFAOdlY2Nk5eMQFObhEeNrY78oIiEpIyMjJQAUVVBSkVMWkZqX8XIaGioqKhpgHT0oKluNi4pP6fjdgGMFACecALUhJu4BoDCSkDCbELgF7leZ3kPw34LyO5Rkp2nZyCkuoG9VVALT1wjYSU9BoZ6fXrZGRX3ogrP0DGcJ2RS1Kd/CbcnoLbh0kqKu0zJc+9qvZbRsN7vNJPff+hunGbGczCyscvcEdQSEZWTl5BUUnjvqaWto7uA+PHJqZm5haWDo5Oz5xdXN38/AMCg4JDQqNfxsS+iotPeJP+9l1G5vusD1/yCwq/FhWXfPteXVNbV9/Q2NTR2dXd0/uz79cIenRsfGJyanoRu7S8srq2vrG5f3B4dHxyijs7/5eLBCAl+W/7P3IxXHFdIyMjJaP4l4vkWtC/AQxk17kkyRnV4RT2Pje5paIome6lfa5qp+KRNtq79dR3+MZtXplFvv1/0f6T7P8O7J//L7L/AftfrmmAhpTk6vBIGQAYkOPKN7rTEhfk8QdcvPVXOPLk1BAXsrgUFsDaj5DA0FB6W587V7JjiEB5tiT/p4UfNwwcHp8FinEnRqw6DN/d6T3anWv0ol4PmoNNZHercb1W8vc0ncbgrChiWC4ZZogAA8G1QNcNGncpmjPr/LotaOT+kq/Oa2FyjryzcDRs0RHXqDu7YDWPP5a/irUpc3x8z/w59daQiXT5Rn9ZEvvO/aC/OU/vr/evin+rAnu1nai97Qopxr3D5qPbMgvwBSiCZy4RoDpNZnsGA2xAeHtJIjAlPIb78um99YEZ7tWSC2IcR7ceRvkMiucTIujs+9GAADfaowSvS3mb75oSH9mMKq0Pqvape7RzcWZNUUSgzhixzyTfJQ6+w0tQHu1FvVMkAtMBm6+5JbmemCfncbxtZOEZwr6+PsgHZVSxBg0uCM/BNt4uEQFXNGrRKTj1Ypdkjggsw4lAzda4q+tUzKBQChYUv0rh3PlJFzV7iMCNSS1hmePy4gsacAgEjYu8tO4qkN8Ia0KatQ2QgTpeXx9eC/RzbVUbYoZXJnGP2kGcXqQ+yN3BR49CL3942/DGeijNvs8PUZyeQZR6aTyhSJDR230VyWPI5MKwpv+ubgYDaspSKTkyVQXt5XY0uTf4DzK7uJdt/OJPWJSU0Vc8NYXOsasSgY9V721Zyc8IqqBn0vtbvzXOJ0o0mG5X9rrf0Gby+Tq59PBa8VLUunB/q0TSeWbsaJA0Yh1uVpo2/oEBm8u6vXa47SkWYE74sijqP5qU8pNZXFjOG+KDSfTvAc0hRT20dtb+zkX8/k792Hxhpley+Jndt8iCiR/hWnv6alwOJbObJU60hRWTp9y5c56DijyKbCQ5tYdo8YzZ7xI+uklQO3Pe4Ukrvt8dYTHxprpMdsoOq3aqg7J2rIe7MWrCBkGdgkUPF+Y31nnseyzF4jrXJYrWQaHNCwOWHu42+2wTQeks2xXT08rSXFNkDx5CvE7fR2ecHH1rSEY+QtWNHOFf4/tUmt39pXQuvCmOkTf2X3ULDzLVhKrFQyat9PE2uvyPQxoXbqYyRIQQfCbQlzzBXpeMXlQz99ND/KZza+5b3q2qvgMTXkuk1+lbR7DuPd7jKPFx9vG5Nff2oCNxdURVS1DATmn78bPLABGX3lFRWXG6LSPL35bT57OvJGFCDym5Mkfp/axaOfYRCf5nq3UjtYItmI36pu8iSN6XS4rekQ5b8ynq1tHkc4prhS4bQZmWEQTmwDeUO5w+vA+971U+jx5kbx72mTw/mOKPHQevZQ9mMZisTDL/tlN8TkduaG8tEH/JaaNRgehQXQy7Piqrj9XydEg8tb4mpe2rQz2vslRWmQ6vGTL1sF98c8ztKkAvRs/RbLauMOBNBMj/wmustp96zdnMzNR4Cft23zVVwVczRnirCsULzm/CbqmoOp7XLm2cpnLvZJCwMjCef2o2X5pKCrSh2a99lfjc0eURZk4jRWkK4/MoVCoXa7syX+fbKjYzQPFCjJHrXYbLiPHF2J/d1W8w1gNkTObIdPBOm/ZHgyYWQOHXW9ioIEHwOcVwptze7HS/lw9jP803+JJP6q/QhANktHANLlbiYVewROPSpSUReIG0EEg4mH+5GV8cXEVvT7YvdCEtS0OGq/lci6KhW9WluFRlDy1ZbanHDvZVBJu8EhhIT8nXtCmc/nCNulnZHW8hWrGQHMwLsVFkkvDqaEDdClesH5ex8hDWkfvwpMYvqxBDjt2u+fYmNH3Qj1Dagv2So5VAxQ4vcDJqv1kaBvIzyFMzcSjF3eym40n/Ox3zNlvXxiQWZmIffSS7HurZuJDCasP/ufiJ4eIgvdDlwerc1k9QD5UFZIXN5w8IP9ZHMNznT8N6PJs71Y9dfGJ3sHaYT+kLXkrM0fKxJhGQzdIeoi0Ol65vMq+1pTcsG/Tshh9TrbVo8volCiYmHBoybVV3ep6rhH7NKpuEDdJ2TBW/4Uo/+Ocxk1pbjhLHWFedeq/lQxdqRhBq+0MVlKMItmTy+LbbpgrXojIRuO0W7+QIv8UcXv0g0nxCNWLQThlP84E8Qr5Acy3Ys0OxR2OqB5l8pv5h8ZLx97iE2xx7g/1JqfCb5VAiQBpZQgRSbqz7Y9ilF4lAzPy2/GEf2V0WgU/9t1XfMVf+ZYr84d5XW67XRV0OhWyM+63Xyf+t21CcXhlFzt2JuLcWlYgkO/42GT0Z7uE4nRJ9LMxbm7FqsTTFBKdJ51+szL0LIUtvu9aSv3gasyszH3cb5fmaQYOvo5dzhc/lbb6HWlTKxhPjdRh92VO9WWj30Gbc8KuDHYbHD0CcYtv9gxUr52O71LgzWXa4vyH9Rn/hFlxt1Egicdnf+qAgupeXozf1Dsvch4OrzPXpkNgCm9hgInAk6D4qPdJSukidOaZikHu2QUX4XTMZryYuN+vVsdaQ4XBFrGlT8jFs4h3BXCsC0TFJBHIqYPvLSPUJtHHm/cbX2i4Zl3cZBd4SqlZePIPtlDjgjO7+gfUQAcbFve0u6FRQk8nZ4T3rKcIAd9SbLp3y2lCSf1puzueh9xAp/kQAYvGEV5Dv3ShVVr5YkdtHwq+5uQIa1rP5biWyVsiEwMhKY2wIJ49fhy5bYtRPtoXEcTCddE2Oq3WgEojZFjLPMFuFegV/7Ptl5w4jVAWEVb7bd6o4WO6Xr+zr+usN/V0jV/LFCeQDTVpFcB6rIptRcd+1F7wvGbds0HuvOyx/e344Q4UJs0h9YXo04Euy20DPrHp5SgHeslEvshgIC6OtoW51/WQkC+3qrrweIb1gS7vJAR7pzikslZ1pjtTz9mOjTj/161tDkVYyDYv0TXw2ZA7XqR7iV66ZFYPWWfdenIE01fJpcqNlA5V2UjwqXMxCrdtEzBj+GlHMeH672krHFz7b1snZnJU4dJmmT4z8icvJGh5jIk0E8mAXh09wKqdf+b1hNLKuBSMVLbDILltXKXCWbt9Uw55qYKo22iP4NBEp5ri/g1Sp6HD8kfZ4ecWEbqx3odSm1Bs1CYNwfpCsY3+KccwVh1QNIdryjXET2bgt/SbbOLM9HYaipgZxJhdf795liuQCh8PjAVLVtY7Q6q2cW2hZQcUMF+bfvA5iaqaw0yHZNgIbRLzFMC199S7MonREhl3U/wmFIdrY61yGGnILTDN5lr2vKLtKBCizL6S71sZ1khEsLgzu2LjeOALv9mnk0Pw5U8AmR+0KEbhloR2nIpD+QoyNCCwNmxWTtg/IUGTjohdNUHEtTn4l1jOyPxKreCRe0G5zLhxvtFEo7FrXv1BhYO9NRC7n9ECSWGf6WZuRWUyv+O6VMhw6pKetq2qGyV6Wf914kFI8Pz1VeoH2Uept3mhIRJcFKLMb8Wd0HMztyCrrtQv9JDn6NfKd9EPN3vXYd9jYMf+af6itXgde6Y/ggVTamKoSTTLhfOK9G4oC+aVh/E0fn4/nbQ8Vsl/WWroz2YedSDaOH037O5LuSk4DW5PtxdN6gVmi1/TLtpIbH/mZSScEqvutoNhxdLsdlvkeuoVoPq8j90wb1N8qdnAkS497yh14pftffBxnU32wmH2yiyM4ePnur84Z1sOrXSEID3sdbVhpjZSX774nVExIabKGbZNErUHFKMa/djYeftROBRUjHXHSWFHuLoMvfYzqYQGcwWvb8mwCVWxpW+nzLIeDN3EClntFmfyFbqVkSbUCCXfXBy5mTtS6bnTXv+1Zb4/jTKT3Vi+QSylsCVh0/+Ep/ERPO7NvXOZ0noRM/L3S9mBFqHPyw9AxWxBBD12B+ct6Sngga95q4dB4MeNUNZUyey6/+AG1d9o1iEXQaMr2R4d5hmf/A4tbekUEokCjsrCeaUTMMzTrVlfVvWtcDL/oppqg7yhXUvAqCUgpfRBYoQGXtXjns5Oz6U02jhIUcjnpycBJvH3xt7OhpC0f9p8+ifH0SUUH4PObWza2e9kdCdMfW3nwyt1PC8fbn61gFCHfAQrqgzUwb062+6Rk1MgHkgjhn630vnM8CNMUIuBmVp6B5MPJBGliWVRtoBcld2+riYZPn8agx02JwNAS0ljgRuhEZrgxhGCweH/H+eq/fDVXkCq9iguXxhrGZQZZYlu8Vp+IaBYGdqx9pCF9qclzyB5SNs/owlrfOWvAbWADVQt+L1md9a6Dg9KnHThBRg6piF1CxmRBVTPCrkHItYisKFovAbzAZ+MjcNtRxTP04vbXEizopnxcWVGGe6Oe5cyOMpm2giPPi84VsJc6RqZMOcd+gQjEvwlW1m+qfaVT35ATNH8Sm1rCZicIPnuxvMRT8tUNxaxi9U2SOjID7oNvVjhBLPWKXlVlU7r8xeb+4F1xrvqso62wdK+TDIO8umCCD6bOnabEWCeUPSK3iwiAzW8f1PYt0xIB2I3qSKv27qduSpfIMmuWY2p8dhYI1pKaqhadRxB6KUlup/ZuB0anBnZFFrSXu2ds+fFutVIH4RM+Zb3avzmRI3kuMbnXKzZTv6gL/gMoIPVx3Re5rkjMhmVglpMzewvXstzJBkugw0zxOgCNl11ZZhthmQ1XG2lRL3Pzs1hXap6Eiqj8racFCw95t9RftQrHZiWu86AjYQ9LRRVdJBFw34yJ/enpTN1wAtG77fXVO0J4La4gQ5G0l4eHLhFCZjyWwhc/aL0aBTV7Etzfyao5id6ptTJ/Zpv+Sz+NQ1luOIbgYzWsx7ZXMPTzjdYmCzvE20mVUrU7vH/BigiApt2zW3SfiZU7acF5/ungh3X1zwQc8xQj81rEv/TmbVRbWs5klXEEfhjW2zlYcjKuV+3Z7gqDWtb0VX3X8rGB7wUEamAllKi4SYkAt1nZ6a0VKJUEai+dBP3n37v36PQaIv4FFIxT1w77iFjW2Rr1s7Hdl1jqyQFFXrmvOqm0iaJHUW8DPrmh76GnDw5/C36KS+MKSqt8OAYfXYD+nPiYkmzp4KYGH96JySGw/C5FeSEzExFLY0ME3X3/S6a9c9XEqorP/njOmeyEqH4JdjoFtlN7WwVbt5s28/0BvjyHTh6DK11VJRsEIYApm1Wt+LJnWLacHEtWn2wg/5gI6Nplwbm8IcGXGwscyoc2pPugzjnw3spyYKhYuezsSDX1+4+lcVWTTS/knTmRAsk+8/UTrQIu50GdGGVxuj+m51aPo3juBVneeQTxQwT7UqAGbLhiA5cv+dNZeWNafVLghK11VMylTEqXkpKrUefKk4097mU5U/M2TEMoRxYHtoVaE919me/swbvlWW3AylIAFbGrk4d+9bPVD9ZuazJ7yTWAzJJd+qzraZ1qzUgnd0QadSnDJd3TKlnbNSch3efo8eXgpaR0WqtdUabwx6iMNlVKG+WJj2X6ndytr3BJC7oEbawB9JGh5HZ88p91LbXg/LmH+0Qgoi5CQtn5ViHO+eqZUVsnGZqggkbG5N6LS+dKV5kmVuyQnAXWaUXcqUSr+HXO3Rwj6AaOT3tUvc2b2ZkX4rzqbZsjhEXzg9+XJjK0U9RGuH/W+2KQ3zVNVYsnj4S7fX4M9VaSrwhBfork7fRgTqktqJvmkYrlQrTCLYjAPnb0em+4SlWEdvd4cepGEIRUsm7UikoBX3h3euq53IIkQXHb1qCbyfteakdC2pft+/AXef6AWSzhzt7zCbNxNV4/CAYzqwtR5w7VevCzqJHOLDGAZfDWTg1WbwYWF+HeF0mvtt6inXyghThyCp3wGQiBtnd3qfEkHsa+9CMCHq6VogR9IpA22H711o5gR88DNmWvBJiRGZHcwqbqOYpYNt8avU5JM6utUTkmLirmJeqQo2crwb8H9gjoFDRuX4eJlwdH5i8YhPWEFp1UfCqwNJ+0VtamNEoTcXlZLJL/cX8yAJlXUsLm87VLU7NPAZ6s23fhp2FGNpi26694VG7qoXRGZtyBcTyLvk7QvnVk+KoVHOzeuc2EcmSuT1s4O4XJD2yWnpqlpfVol6tH7BGBzkwlvJvlGKF6dlZHrlukqguZSPvZRN2zc+KwYg350JVXOqsaF7HYrIfHIP9OCjB7fgd7clsw8rP0JTIcrPksHbRVvIPDr3HHmIABGkBYIfj1fXfk9ySHh/LKdSG27imRuwbN1bluQ7MmeTH2H8PM3oRbDtdue4bwxdinPBgp78Ivpzu//6Pz/GY7jx34qiBdfDvCb5sZoG9B4KOiIl1ZmJP4cdW5hpmQb5Z/sp2wu7QGz+p1TuofyBmSxhrXVqeqt6/46G5SnoUZTNRusws8EX7UXJesnnWfrh+duI9GWj4R0Bgl3J9IcpuLGIXLdt7/rV9N2xk4vyuveKxyjIwcVuNwUbuZa4RqaDkU2eFyYRH79U37poNvtc/HJeQtUHQ49Mv6HFfDqL+oKRpeKwm+ykaXkzf6NHVhjbR4EFU2WZqfiHtwyZfeBceIDkycGHxRaIw1VbN0lBtiOvKY2d+1WRdKzi2wdE3y42uS/LBpLHLQ7BkCmTmna/MW2jgfK3yq0XA+kR4OVbBlIAIo5ssxpAU0IrJ2GUExCVa56yulfyWaWkZ2LoR71jgi0K6I/3p2da1MNu61oLAfr/R0jn8vp1BK90TPKldKl0E6UUkSai2I/SE0vkmNMa/w+Gph906jl5sDHDpUfy309z7tamHRej2zkkHcjx9PWq3JLv5WUhyQ5XbUfPeL0ksuYuoKvwgpCU6B43LzUHHbSQVbAc+f1lPCjWDKxWQ5BRx+mOkfAtju2Qtk1DN3gbTbuiPKGSnFL9dUTq7XgXC3lSeElzqJAHNmJ0rP8ILjuHE/zHZUJoJuZLrDLHq7ol/kp3f7Y9BbjqnZiemC/HfZnRyUtrGIadfivNHWwdWQXNd+lv10UCa6BINWWJOdDQaZNEQvvlXK+DYihdGUyc7eldExTxmyCyOxnt3tQNK2L4R4vVn1qtN28dRcyz6QpG6GhHqoqvrMleHkH4226O0VWVQ3pu0IJLNs26c1VUqGfzMMd4a+A3xDmU/ofvBdfQIIIcXFVvH6EnfZD36TW7l9tXKLvSvZKyA7HS43TJ6NQPgVuGdMnF/vCbyX3KODgXEFCMnVzUSjVUJvrEXS4/w0xrYDhD/dG6fuj/uVl+A0wwCGZnMQDjEesHbv7gLC09GaAa5+VyLQmjTqe+uxsxfheqs1EUjidLwU11Vx2DdFd9405DW9jTcZAxmvsFj0ts6Iq8KUPmO3ycVj57hHAiJuWHQZeYkzpTTzPdgxCisl39g+6nkNrYwciqoAc88wrFRdio7jzYgAB7gkUtZaBDV5IrlYAf6JpxCA3oFmDa7og8yTRszHdSZlnssL073kiP00XTqJgRgoTU/90ZcUcUw50RJq33isE70rPt4SvbAIezoxX0RPBLYfHD/ReFQ78vfZj5Ys+/oYveacjpbehRkpxNMto+8KSR9kaZOpbpyRXp5D3xf0pOiMPpfZveUiZTkY/3cn/1fTsfHUq3xSG4fFWZvDxd643E7LrfTCh/jyihTKLBX577lYaEfIsSwoRk3QfHKzY24lS2brVeeb4BgU6mgjd7Be7TM2l2IyuFcDL7Ijfbq9kw9J9LhY3AT5zO+R3XNiTaBiAVLDEoJNLzcIpb/MFoSRhow65LDYfijeKCeS7Jc2h0AD9GSLCGCEKgzShrfmANa1RBkiQC+L7xh/yrVMHYEh1Iuf1tM4K2xY2XDtDbxK8M9A195ZlsygS4GCICCskfrp9lwLIfwaJN6L4bcuESgyvJzSmQfqoWfgFcLzaiJQe4caBKUQ/zBjrofFjI9Ee+EFUtsR4tKeESeXt9aVbkc5LQ4Iico/jB8h62ecqa7a/B3h/gdygrjnO8cZfn7xmgjUGSE6oo72maIvZ1B4JTOWom/h3P9E2LhfQCwbR2im5pngt9mOb2gIUm8PeAXLt8lx0CU7x6w0tnz0eLM44fULFmOG08ZG/pD8iWx7Znv2fpUgQgTwTndw9Fc6xMPXRgTqYZd/XlSN4gYXjzMTVUp+j1jMdzTzNNyfPVhTcPo5GO6rNP4seq9CVd4qxWwswCrJdJWflvl9zF37oSqR7ipM0cPjTCJwQ+ghDFvUiCECNqiL7x8iSfkRy08bBpFTCLySXWgd+gJ9ZswXECuQ8ZQnialaeo8piHfiXW4UxTdchv1x9eDlaCERiGGRkwjX4xH/XLN0VcvgPub5xbPzBJP9OyM1E8H+EDkQ7yR+fjvX76fJea51KH91scs8SIW7oOMLGP2rrs748MH82pvRuvEmaCeCauddl+nQwe/5SKwxYXIpajLsxl4Ke3BLcMZGxddMPwdHOKiZ0TkGujSXZgojTv0HUEsHCLPvAiJFGgAA4BoAAFBLAwQUAAgACADRkFZAAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgACADRkFZAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1caW/bxhb93P6KgT7X8uxLYbdo0qZ14iytk/aheMADJdEya0lURcpL0B//zuWQlGzZTpTYriIjNkVyOMs5c8+9dzjK3vcX4xE7S2dFlk/2O6LLOyyd9PNBNhnud+bl8Y7vfP/d13vDNB+mvVnCjvPZOCn3O5pKZoP9zvHAOW+SsNPTIt3RvZ7c8ceJ2embYJT3tt9LXIexiyL7dpK/SsZpMU366VH/JB0nh3k/KauGT8py+u3u7vn5ebdpqpvPhrvDYa97UQw6DN2cFPud+sO3qO7KQ+eqKi45F7v/eXkYq9/JJkWZTPpph9EQ5tl3X3+1d55NBvk5O88G5QkGrLzssJM0G55gUE7rDtulUlMgMk37ZXaWFnh26bQadDmedqpiyYTufxU/sVE7ng4bZGfZIJ3td3hXGSO9FCE4wY2lNvJZlk7Kuqyo29xtats7y9LzWC19qlrEQ2Wej3oJ1cj++YdJLjn7hg4iHiQO1sZbPF7jKh5kPOh4MLGMjo/rWFTHMjqW0arDzrIi641SMJyMCkCYTY5noK89L8rLUVr1p76wGL34BmMqsvcorDjmScQc1zn/hn4tfjXd2L06SLHUajmbr9lo06RQ1n58m/KzRqqaRnUQq21Kc8s47R2NxoF/1EDNErZoqvpX/a60qO4a5vUW4/nnNWj1owxxb7exlb3aPFhxQmXr6VOm44IMRgVmAs17wQyMwzpMc8NEwMFJBnNgwjBtcCo8s3R0TDnc0Ewxz6icUKyyDuPxR7uqMssMKqOrDkbJBBrSzCgmKqPSDKbEKsOEkUqFEsYwg4eoeSGpCmWZtjhTnmn0kWzSCRRUeBDnaF4yJZiih4Vj0jJL9QlNtm49dR1VSmY5s4IqhFnDpKM5o7xnikZja7iyyXReXoGoPx40H8t82nKB0hCkhexFgbqiil/tjZJeOoKnOCImGTtLRmQRVUPH+aRkDYkyXhvOkulJ1i+O0rLEUwX7KzlLDpMyvXiG0kXTdlW2n0+KN7O8fJqP5uNJwVg/H/G2z/lILH2Wba9xopZu6OUbZumGXfrsbmw3xx02L1K0n8+KpngyGBxQiYU0AMnXk9Hlk1manE7z7Oow9nYrp7OXzvujbJAlk98xWakVwoUtfBDpVeODjAtNT/LZ4OiywBRmF3+ms3y/syN81yhnlbbWaO64x4OX8Z6wriuUxO0A3ecBfesnZHzedLULSnHhQrBOQbIub7kVG07PWoKSi3Qx1uGs8veLk4PiST5aXKqG/zSZlvNZFT2goRmN6YfJcJRWU6RSW7jm/mkvvziqxTrW9fZyijMee9AbVrAzSIM0BgXqYy8eqzLUtbYUr8rwqgRvJls2aO+LIKsS1bEXj1UpzN7YtXqoohmm4E0zWVEJGu/UZtOIFc19cvTzSVYeNidl1j+thyriA6/m417azqCrdYr7qnNv99oU2ztNZ5N0VM9okDnP50U00KXJPkj72Rin8UYNSUJ0vUMH4tVBOpylTcdHVWQWAavu8uW5unK5qurZLB8fTM7eYi5c68DebtPLvaI/y6Y051gPXuA0XcyqQVYkcCKD5efIBDH0PjkLwFMSNDDOeXmSg+xno9yCrQGEBZfJ/EbpGOEWK6s5hhEPF1g/yUYDUcVyxxl6P6n8k4KPUFrKYyud5/1jMeg5mx6rVFlneon4b1mc/W+UD3OGSKv713TYqcX1SdI/Hc7y+WSwgjUi0Vn5hkyETSr6qil1QTE3Wd/SDxkobJ13PYK1xQ9ZyvsYoscKMRFY3vsLety67DimpVZx/xYjYcloepJQeFob1Ci5TGdX6Kuqe5kPrpMKBCvkIU3TOCenaRqnc1mbMZuiukoFltiueVhhpBKOtvc/dFZGd9U8FoZ02+gqsWjHx+99fOKm8dVWUEROFSJ+UmkPcbXOVpSCOiW4CsIpDgnXFCMtM1rhQLJ4xZPGq9ds62PBfPK4YL4+Pi7SkhDYUTxO4/DwWEshpAlKSECtLCV0l9RVHzi8pDJOBymdE/cCdj8fjxOYdxSKQ7iPziKuSjhNX5YIAj6COi+bG0msqq5ghTfyRC0ryYdoW9PE1zSBBbi8KzRXXnthjJbKBuUadRLCBu8wj6U3irsQJzNuAHWvHSiBjAaJaOW6qy0RBJ4i1S2qeKCVDPrwSzYYpFUCEEORvyfxkSL6v2w8HWX9rFzHBJ5ugZ7ILqD0wntjnIe0GNcIighKI133mlshjH9wQflxK9C00npuaQnFeiiHrRUjcKkwl4OElHju7gfNDyrG06gYP64oRm8NxehtkGKsCsPlLdejYGghvcU9rrVR2q+E5o+rFz9txwwXRnCnrdOaY6a3qm2hys5bhLdO4ageXDCebQWcGuqL8AKRhtGOuhPRdF5KxHEBAuys1OFxBOOnKBjPVgSjv4Zg9DdIMGD+3kJxg1BeefvBCAOCEbxXBjel4TqYf1cxft6CKY4sNARjuXEOc9kr12ahVgvvwIP32qCb5sEV45etgFNx7XUQSEK0tkK3k9o5bqwJJjgTeNCPlJX8HCXjlxXJGKwhGYMNlwxc5kZ6eDdhjXXOSd/mJN46rwWHXnu4RP8IOclVTg4mZTorgNk1YpJITG+FmIO7iblqMgefZjK0ADGMh1483Ac3mN+cKyTdCOo05LkhhxsujQ2AX3ncFy7qOW4oLjgVp3ekSrrg7tEYbgO+fxvwz9cB/vlGAR8sKY3URptgIecN8Jzydy8REjrNhavTRNwgY0AKJBXnXmuEMY8A/CAC318B/sU6wL/YKOCNsspQUK2lc1q18SHXIjgELtY47SwAtgvkLVe0KYB75J8CPXl45GutGawgf7gO8ocbhbxw3BsTdLX8Z5117ZxXjiOgkUbCDwNou4A+IHQ0tDRISybyPuf8UTqk69dwP4i4H67gnt6Ne1HX1gCbriL/Mev+Rlx5g0annw+96Bq4UeFVQEgolOBx1XVHdCWF7JB+iRhHyxp2CnygS0EGx8EL13f4X9dGWWZtB1zBO6LArDUCBHKrb75O03RKrxxfT97OkklBu5pimaU3amtxfBg5frHC8fF6HB9vFscUwCLJRfgvranXHBWXiGir6Ev74GuCEcI6mJXCnECyRgsP20bxi0jx8xWKh+tRPNwgikEbPBet1Qf88xKRQ80yTFg7Z5UUnkulYshgupKWPyhSM7Bj4beN4+eR44MVjk/W4/hkszg2XCDb9AjzpEH+6RqtvnrdNhwjCjeKSDe0PeRL4viuwOXlVqwrCE/Ltx6BpgmK23/tzfKrLUBTdi1yUq6so51T1hjdoAl4aSOVs1YJ5x5+lfz1dqB502u1h1omvwvON1sAJ+0LQmIIu/ZCcedM+w4Hmhys0jJwYYW5p5e+V73jm3x0Ocwn17zjy+gdX+Egac6yRBHW133l7xmq7Z+KWHocS09i6RwHDbo+lHHG5hu62hpv9US2xfXmVbu1XfH1jYef7otvn7TXo4bxp0UN99fVK2EDZddX3sD4emsNgkMrlRYeVyGQ2vsmBUAajtxayiA0/t71IvdDfP3LkcN1ZiabxIzoIlBHyGYhtAZZmBTtehOCtuCgtFU4B/2Ib2t2dNcLKRXopI2+wt8Vt39hzOSbxMytJkO2YbjVikO7lfPChcZmBOIO4ZA1gyBlzRYZzXSTqNm5xWpupuw9hTOCdlsFwWlXEKi7KxHaOGY+bkU4bVz0dRf+6zorwr9+Gs8PsSIsu8EjCIWR0QpUtenzkq4qREqeB9rPrcG2rhmWWoUgEa7SV/Nog8H9RVAfgHy6Avlv60D+2yZBjiwJ4amiRXjp6w2isssBKK0S0rcR4/pwBblS1dZ65Kreg6FHQPz4NsSP1kH8aJMQ90hag1RIUyVN99bFOGgmQPWUfxlKGCLkwVgRtCNxk17Lx8M8X8H87TqYv90czFWXAz9vhNDWu8BbzIEn+RUEwkRJvYYGzKU2QjrExkrCuzwC5MPbIH+3DuTvNgdy06V9R5i4mtIMBLBmgblWzgaDKBd81AkwMKf33kobAxoeFfPJagq8Dua/bw7mjjZj6ECbRg1JSAu5g3RwcqkIk0BHjTgu0EYbw8HRo+zaOLkN8D/WAfyPTQJcafrOl9WY6V4FX3tP2gqthNROYK7bJl4B1EZzE5yEnOvweICvRoh/rgP4n5sDuOkiD0OiZWmPGF8Arji9BuMI/+EukQg0ESKiFW5ckM4FZe5TU25eYvs14v1bXDQ7iotmb+Oi2TscDMkFSyxNYpa4moeblt9krOnvWNMs1lTEmspY0zzWdBZrOsfB73fef9LSnPyIpTl5T0tz9VsyOqws1IqHWZn7+7Pe593Y08/Z/Qg1Rp4TkLUaSmR9u2NaSy2M1MEHerMh5GL/I73pQ4gulbe0Pe9jctlb+NqwVYbZBlFDITjt7YU/FHCMcvEKhHNkpIJe2knNIfW2Xf9xWmnaSYHoUVuzRcQUG0QM2QxtFjbCQPWh6LLdMqwpiAQpMIpgffsdA/q6B5e0xwmOGG7Xbg8x5QYR05iGp9wJn7g3qvlyo3Aa2ZYwlElZ42S9gS/oyn1zyb3D4a4vf3xhxMw3ixiEnvS21mv61lPwzXZioYR2ThpPe/CFlQ0v2oIuIlEIJZ3ibnuIOdskYkTXiOAEbdeiDfPB6HYhO8CNUBgbpLE61F9g1bQUR19sdc4jLrBbZDDnm8QLLINcS5BKBAGsg1t8V375RuBK1SZjSMeCU8IGC5W7a8vkF8bM+w1ipnIx0nqyC8RgVoh29U4Y+Bs4fwf/YvGh3kohPH0PmVJB/HxhLmZ3+X/HofPmP1T87v9QSwcIs3BaNAsOAADtUQAAUEsBAhQAFAAIAAgA0ZBWQLPvAiJFGgAA4BoAADEAAAAAAAAAAAAAAAAAAAAAADM1MDEzNDIyZjYyNzgwY2YxZGI3NmVmM2UzNjc1YmExXHRzdl9sb2dvIDAwMS5qcGdQSwECFAAUAAgACADRkFZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACkGgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIANGQVkCzcFo0Cw4AAO1RAAAMAAAAAAAAAAAAAAAAAAEbAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDdAAAARikAAAAA" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Aktuelle Version vom 8. Juli 2012, 20:43 Uhr
Inhaltsverzeichnis |
Dem größten Winkel liegt die längste Seite gegenüber
Teil 1: Konstruktion
Teil 2: Der Beweis
Aufgabe 9_3_SoSe_2012
Das Innere eines Dreiecks
Seien ABC drei nichtkollineare Punkte der Ebene . Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden:
--Flo60 22:05, 15. Jun. 2012 (CEST)
Was ist das denn?
--Flo60 21:29, 6. Mai 2012 (CEST)
TSV wunderbar