Die abelsche Gruppe der Pfeilklassen 2012 13: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Neutrales Element)
(Abgeschlossenheit)
Zeile 4: Zeile 4:
 
==Abgeschlossenheit==
 
==Abgeschlossenheit==
 
Die Addition zweier Pfeilklassen der Ebene bzw. des Raumes ist wiederum eine Pfeilklasse der Ebene bzw. des Raumes.
 
Die Addition zweier Pfeilklassen der Ebene bzw. des Raumes ist wiederum eine Pfeilklasse der Ebene bzw. des Raumes.
 +
<math>\forall \vec</math>
 +
 
==Neutrales Element==
 
==Neutrales Element==
 
<math>\forall \vec{v}:\vec{o}+ \vec{v}=\vec{v} + \vec{o}=\vec{v}</math>
 
<math>\forall \vec{v}:\vec{o}+ \vec{v}=\vec{v} + \vec{o}=\vec{v}</math>

Version vom 12. Dezember 2012, 17:17 Uhr

Inhaltsverzeichnis

Die Menge und die Verknüpfung

Wir fassen alle Pfeilklassen des Raumes bzw. der Ebene zu jeweils einer Menge zusammen. Als Verknüpfung wählen wir die Addition von Pfeilklassen.

Die Eigenschaften

Abgeschlossenheit

Die Addition zweier Pfeilklassen der Ebene bzw. des Raumes ist wiederum eine Pfeilklasse der Ebene bzw. des Raumes. Fehler beim Parsen(Syntaxfehler): \forall \vec


Neutrales Element

\forall \vec{v}:\vec{o}+ \vec{v}=\vec{v} + \vec{o}=\vec{v}

Inverse Elemente

\forall \vec{AB}: \vec{AB}+\vec{BA}=\vec{BA}+\vec{AB}=\vec{o}