Serie 01 12 13: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→zum Knobeln) |
(→zum Knobeln) |
||
(11 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
=Aufgabe 01= | =Aufgabe 01= | ||
Gegeben sei ein Quader mit den Kantenlängen <math>a</math>, <math>b</math> und <math>c</math>. Berechnen Sie die Länge der Raumdiagonale dieses Quaders. | Gegeben sei ein Quader mit den Kantenlängen <math>a</math>, <math>b</math> und <math>c</math>. Berechnen Sie die Länge der Raumdiagonale dieses Quaders. | ||
+ | <ggb_applet width="1000" height="793" version="4.0" ggbBase64="UEsDBBQACAAIAFOOVkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABTjlZBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dzY7jxhE+20/R0MHxGiup/0naMzb2b3YXWa8NzCYIEhgGRVISdyRSIan58XqBHPMgOeQY+xGSu/MOeZJUd5MSJXEkcaTRLMc2PG6SXf1TVV9VVxeb8tFXl+MROg+SNIyj4xbp4BYKIi/2w2hw3Jpm/bbd+urLj48GQTwIeomL+nEydrPjFleUoX/csoQlGO47bW5ZdpuzQLZ7lJE28X2Cqetg1/NaCF2m4edR/NodB+nE9YJTbxiM3Vex52Z64GGWTT7vdi8uLjrFUJ04GXQHg17nMvVbCKYZpcet/OJz6G6h0QXT5BRj0v3T169M9+0wSjM38oIWUixMwy8//ujoIoz8+AJdhH42BIYxkS00DMLBEJhyOG2hrqKagEQmgZeF50EKbUu3mulsPGlpMjdS9R+ZKzSa8dNCfnge+kFy3MIdKpjDLIwt2+KYCIu3UJyEQZTlxCQftFt0d3QeBhemX3Wlh4RGWRyPeq7qEv34I6KYYvRQFcQUFAopTRU2zzAzBTUFN4UwNNw054aUGxpuaDhrofMwDXuj4LjVd0cpyDCM+gnob3afZlejQM8nfzBnnzwEntLwByBmGIBihK7EjR+qPwl/XFV0F5kkpVGzZFpz0GJIGKHGmHQnTlkxKBX26phUXMOnXDOoYXwrRkWJTxhK/6v/VkZk69hcHtHc7zag5Adh8ahb2MpRbh4oHSraHD5ZME6VwTAHCUfhniABxiEtgLlAxIHCogjMARGBuIBbYiOpSgsxCyo4YshGio4wpK1D2PAfbunOJBLQmXpqgVEiAgNxJBgi2qg4AlNC2jDBSCkDCiGQgEZqeEJVF0wiLuGO2YjDHJVNWgQIGTSEexieIkYQU42JhahEUvVHuLJ1aaupQ5cUSYwkUR2CWYNJG3MGehsxxY3MxRVGk2m2ICJv7BeXWTyZ6QKowSHN/Z5xUAtu8aOjkdsLRrBUnCpNInTujpRF6IH6cZShQom2eTZI3Mkw9NLTIMugVYreuufuKzcLLk+AOi3G1rReHKXfJnH2JB5Nx1GKkBeP8GzO8YiUruls1nDDShW8XCFKFbJ0bVWOG0MNmqYBjB8naUHu+v5LRTF3DSDJb6LR1eMkcM8mcbjIxlFXrzpHwdQbhX7oRn8EsKpRlFzQfBFSaC4WIUuKYiZx4p9epQBhdPnnIInBACze4bCWSO5wRzAhWujK1DDL7jicC2ZjatnUVgbkucr2CKcdLG1bgCkJmxMJfurqurp86OB8piL3MphzO0iUaZduXqaP49H8kRbAE3eSTRMdQIB3TBRXj6LBKNAg0f4WVmfvrBdfnhp0MNPXm6sJ3GEzg95ACx4lyrMCm4O87JlS06ipzaiwpsGaAhdwC/1ZPXGoptBlz5SaCvBrppazSgo2CS6GCVPt0nArN5zCXSn0q7V+GoXZq+ImC72znFViGryejnvBDEOLfZJ99XnUXQLZ0VmQRMEoxzQocxpPU2OiJbj7gReO4dZU5CJxlbr+ABMwT/1gkATFxEc6ODMC07W4jNaVx7qrkyQev4zO3wAWliZw1C1meZR6SThRmEM9WAfOgjmq/DB1YRnxy+2UEQLrnlouQDyZEg2Y5zQbxqDscWfQgXbgWeCpsr/LSRKkKsY1AkbHrWcwBMS6l+Dx3r17R98/RO/apCNM+V4V5uHSs/b1DyubFw8ruqzqsbJDePheMx2MgjGEjSjTljIK02wGGM2OEnjce7tkEwQXVoHc0WToqpCUFNoB5WsRgpeZGHBNgsDgMsvtEU1G7pU25xJu5laTgUc/g7g11aY9a6QuXoS+H+jV3ATVyjsom19YKMzTOXDaJIezYXaFbY2oGd+//KS5hpbTvD3pOLYjYVPCLWoxcJLSjJOOVDyOxmGk5zd2L2EKEn/273+BXHopLDMZbEsA6NF8W2Kcfu6mgVhteqCZubgCX830jqkfXpbgCggMfwCLU5OZW7wyWgTKgdVzFmAZFuY0q7q7VnOgEmCmbGm6t69jvxDDGj2R9XpyE6+kJXwNVLTgltFCSmgpeabtVPnzsipZBzYyjpSMMM4w5bJKlXoeO2mT5dqUjr1emyX830yda0zxzhUK4iAWBBDUoYI4DocLsV7BJS9e0vCSqz1uPU2CIYyUhJczf+vF6aftX3568BACxCi/wtrlze/nNLoGQwlhL3hCtMEVlsarr4VDurUVSf0+nEwqJfXzA829Ec7PD3J5kEWh5URFiy0kVRqvYZJ683VZTHM+0GeoDLcN/Be9NIx5tdZ/4k7i9IsCJjkjwP0z0+4vigYQ8t1DdF0dXVPH1tTxNXViTZ1cU2etqbO/2wxkRfm7pqnxUa69T2f8LpczPRtNKo2pclt6pukfFPzoOVaJMq+YTWvb9Q1icD80K4jaBefEn6bfv3ueTCO/P/rPP2Cn9x59Msq+QPgB+t/f/4lU7XmcRKtPQRln6ezx6gqqEkoDU/RMMVMnXruEftPvp0GmVvo2pXqhp7xyhS3vZFJFTzucWcQRtgUhpe1g0xpCPmnBLt3BsNUmNiOwof7B5M6rEEKrEYI3A+RxHYDQmgChNwbI4zsCSBJ4w+y2EaIyswoh1nYIIR1KIGwUjgBMEAERlG6OO9KWKmZVqRpLUADc7UDkSR2IsJoQYTeGyJNbh8gQhgvuCCRGx9TeDiLtai+COw6hloUpsyghDNvyliDytA5EeE2I8BtD5OmdQeQACw3RKmZbLjPta7wIPHY4cRh2HJsJSVRS91Yg8qwORERNiIgbQ+TZHiDyNPDOPsRAxCwzbVK9198yEmkfzImc1EGIrIkQeWOEnNwNQg4SiVDH6HjLZeYaH9I+mBN5XgciVk2IWDeGyPPbhshdRiI417HYKRRpH2xH86IORuyaGLFvjJEXd4WRQyw1SplayTtGI+1b2tR48XjsRj6K9MmQb+PR1SCOtELMWQUX61SJS/SG2KV60+MyFUEaeU2zgqwcD5oWrmnRMy08KPhxyzdTyAeuwIaZwsyDlHu9adroenAtnj2oQNc1ge4qWgTRaFFF/pp8DhcHzFparIX8KxB06Jn0WH4zKN/0dPia3+i2An2G/vs31EWuyi2vTKeL6AN9kCJOTtXZvhISN7zSWPUYC4pIg4G6m0nK3WCmh5FkLebKhoU7zCacUltSScGMHD5fotVhPsehDqUWx1howwJ6i1FHMiAm3CGEFxZ8A/wFf41Mk9QcIwjHk1HohdnMhkbqnc5LcFNJGui36qtnBc6CYKIOaXwTvUncKFVHQQ3N5jd9y6rsNVuV4AsplRwWS8cRklmgUqNK1pGCQ4xlMywszLFxkbRjQexlY8eyOXWwI+6NHr3G63HJJmWx866ySIifMGdMnyoAhVp4h/cIH5gi/WYrcsUemTHIants8w4XTAp47jjcse0mOdZt4qVnJvo5MdHPcxP9vFiJl0oxq2kQmAZ902BgwqVhvXCp3OndREsVofgqDIlgZRyW3w7CvogzZz+h0sJcDhYpBXuw5l2luL84Sa4Nk+6xU+43WY2rMRJbGyQ12imv1+Og4Xqs3rf8CrctwyYr8po9y/3bstTPKJ2YgOfZSoSk8v95Jul7kueS9AVQ9/UFBEjB96ReiKR7vZvYqPxCo15sDtbPJRHWfuIiM4/DpY5ARXcpvN+SRvtIGjVVieqTBAyxDWEWt0EtSldXpsc8guUEU5srR0zAF98flfWbqrKamaH7uwcJGqvBFatjC1bHOzaVjuACtCy5de8inKcmbnmyIQdkXk0aWr+IcbwixhkUMc6wboyT93s3Uc7i+9Z6gOOW+iBW7OlVWTGTHSMd83V7Fk6WvgeqkeDdix3vIthDJYTury/2mqvDe+yMN+R+mquz3zI/pcxPg9V4n7cfNXI9T01s8+K6XI8+jFUke6gh9vUFU/qnRbKH1guETLd3EwctnC+rGQZxYdnqB0H2EgblEzlgvofuwVx3EN/BXpvc37cmfmN1uMHhNtnfblolm6qyX83LkU3ZnqYq8Nee7nlcle45WQlyzFcJhrZXRDleEeUMiiinXzfKyfu9mzBn8VOLeoCzmAWI2FOYU0zkYHFOby/2uov8fjtDu3tWp7E6vMc+d1NWp7E6q3dU9v5uL/rNVeGmjE6jNxgrHw1GSyfL828Iq3/1BrVRVYX4buNvCK0Ms6zKD/znhJYP4Odiai9/MrnMp/nAklQKKJqOgyT0WteOoSZ7Pv/BPrWmwzLNJcXEgT9WfJlaQ44bwVA+QLcGC+I6LFSzuoyFhVEaBoUof+F+E0vhW0nHdN88seQJ+DWC4bvBphigeaIxm/abQIZuJZm8/+YJJl/i10iG7oaZYoCGiSatdMVV602ZrOZys+KGS6vN9ovNjZaadNGLVjGm62tyNHed5YWTdCSBfxjlGBTOsWXvm5dF11fFTU5Rk5+yxzsv/wzzbTO04LCq+DEENdkpuakSN7RjEeZILm31QpwQi+2bm0UvU8VOTlGTn7JzKQPuljnKAuXjNC+V7wA3z133sDTr1+7rHWa5mEY9zfeDi2nU5yY1+mglcfp2fT50eXf5dvu95Ta83HyrSDuECcGIjbHgTEpmDk/xjm1x5hBLOJZj2flufz5Q1crCZj8CLT6MveI2Cn1U5MWXFRrWU2j4gSgUcC24St1IhiUWlBU/JVat0TopuA9Ov93y/+VB3Rf/b7Av/w9QSwcIt8/LN7ENAAC4bAAAUEsBAhQAFAAIAAgAU45WQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABTjlZBt8/LN7ENAAC4bAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAEkOAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
=Aufgabe 02= | =Aufgabe 02= | ||
Gegeben seien die Punkte <math>A(5,3)</math> und <math>B(2,2)</math>. Bestimmen Sie die Gleichung der Geraden <math>AB</math> in der Form <math>y=mx+n</math>. | Gegeben seien die Punkte <math>A(5,3)</math> und <math>B(2,2)</math>. Bestimmen Sie die Gleichung der Geraden <math>AB</math> in der Form <math>y=mx+n</math>. | ||
+ | =Aufgabe 03= | ||
+ | Gegeben sie der Kreis <math>k</math> mit dem Mittelpunkt <math>M(x_M|y_M)</math> und dem Radius <math>r</math>. Entwickeln Sie eine Gleichung zur Beschreibung von <math>k</math>. | ||
=zum Knobeln= | =zum Knobeln= | ||
<ggb_applet width="569" height="399" version="4.0" ggbBase64="UEsDBBQACAAIAKFgVkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAKFgVkEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vvbcts4En3OfAWKD1uZrUjChQDJrDxTjjOZuCqZpMrZrdl92CmKhCXEFMkhKVtOzeP+z/7Tfsk2AFIiRcuWE1/kSdkGSTQB9Onu0w1IGf+4nCfoXBalytIDhwyxg2QaZbFKpwfOojod+M6PP3w3nspsKidFiE6zYh5WB46rJVUMF1FEuB9HAxp7YuBGHhkENMSDAIuQU+mdUhI5CC1L9TLNfgnnsszDSJ5EMzkP32VRWJmJZ1WVvxyNLi4uhs1Uw6yYjqbTyXBZxg6CZablgVNfvIThOi9dMCNOMSajX9+/s8MPVFpWYRpJB2kVFuqH756NL1QaZxfoQsXV7MDhnuegmVTTGejEsXDQSAvlAEguo0qdyxJebd0anat57hixMNX9z+wVSlbqOChW5yqWxYGDh4xz6vNAEN8jHscuc1BWKJlWtTCpJx01w43Plbyw4+orC7ODqixLJqEeEv3xB6KYYvRCN8Q2FBohbBe2zzCzDbWNaxtuZVz7umtFXSvjWhm9xnNVqkkiD5zTMCkBQpWeFmC+1X1ZXSbSrKd+sFafvACdSvUFhBkGP7GYw3OMX+hfAb+u7hh1lSStWaticctJmym5CHafkn6ToqyZk2Len5PyLWqKaya1eu+iJ+EtaGEq82N+ezOy69TcnNHef9uEwn0QFcejJlTGdXSgcqZla++p5LzU8cICxAPt9gRxiA3hgZdzRAJoPIogGhDhyOVwS3wkdOsh5kGHixjykZYjDJng4D78cT0zmEAcBtNPPYhJRGAiF3GGiIkpF0EkIROXEKOUgQTniMNLenpC9RBMIFfAHfORC2vUIekREGTwItzD9BQxgph+mXiICiT0eMTVoS58vXQYkiKBkSB6QIhqiGgbzSDvI6a1aXhNpfmi6kAUzePmssrylS1AGvhoTXuWnzqs+GychBOZQKI40ZZE6DxMdESYiU6ztEKNEal9Ni3CfKai8kRWFbxVos/hefgurOTyDUiXzdxGNsrS8mORVUdZspinJUJRluDVmrOEtK7patVww1odbruDtzpE69q7ct4MetCilDB/VpSNeBjHx1piTQ2A5Ic0uXxVyPAsz1RXjfHI5JyxXESJilWY/gOcVc+icUGrFKTpqklBzGXNQrIiPrkswYPR8l+yyHQQ4yH2XNcl3MUMeB/Y59J2ESGGAigOM0p9EuhRUBmFOviEP+RUYN/FRBDCKLjC5dVdrJ5anq8sFC7lSvlpoeL29XH5KkviFRRG+6MwrxaFqR1gBYXW6TCdJtJ4iCFbSMzR2SRbnljXYHasT5c53GE7/2RqUEfADJQDrU7rdmJbI6MXtpLCRgYbCdz4mopX/SSgRsK0E9saKXBeu7RaUdJoSXAzjSoNn2GnEzXG83WaX6SqetfcVCo6qzUlVv6XxXwiV/7THZLc2ZB6zVBwlNWvdQWnr//Zuv40k1WoSxFOGQ98z+Pwlwa+b710wz/HZ7JIZVKHAzjCIluUNrpbkRLLSM3h1nbUgIba2H8HBezTWE4L2eidmKrOwm16cdvTe4/NUG+KbH6cnn8CT9pYwHjUrHJcRoXKtb+iCaSQM7n2SdA9hAwUt9/T8QvQRTrTALyVhhYie1HNssIUbkBI0OqwTeQcqjRUGeeE91S0MlNk6j9tD5RNPgMnbpixBRT0b/FUFCb5zNil1jkJL2XRQcEM9z6LN7EB6I0CwA+5HkA7Ry6ldauqjiaUw4AmGFvLWft8BWR8BhVnaQJz9ZK+eKviWJpEbBlBTWV6DloCF0Ipj2vXusR27ehL82QJvDwwjy5J/ehLfWEGglUXaokOG/nDRuoQSHxg9hSHrB700G0ueAsi+XtqV1/aqNAJSZ2CZawnW5P1jKeVXtkm7NuuqUAew3i7m85ESomWNS6XDcIA3QrhrzLvBqZymScqUtUmplE2n4dpjFJTxR2nFfAQwOesK4sQ69BAIdEoWwAXVdNxaDte2WHrwXqmMnlkZYrDm2y1ZsG2qXT5ObXNxDZfa6015oCxBymYYx97XPjAorRjg5UJjAY6v3UqIvt0g+a2e2wXhlf7A0MPBfceUeiSbrxXpPunoFxyh5S7Gz3E2+jhyHbchh2O9icsNhn5W+OgC+aJnOrnG1AetQi1A+XkehDLerQGpcmjxtVVGPYp5stVBOzeXc5T83XOM1gmOoxXTgxh3y+Bz6TM9c7lQ/qpCNNSH41amcbtthNbupjLokVtiTEBvLxowBnioFbv7ioVsqNlarky0UeYaK4AtgFswOYhGAnacFLCtrySJxFU9+n6ENc6Tb2tJbAbNfykzwBrw3JzcaqWrRodym71BbYZYSdcv8ak/aoYY4J3ZOndTZXP1KaxVsF+ZzH0DZbCtaG8IQtY4BPBdrdYbTDaYbOHs9euKbVjrGVewGx6mBrqjw6ChwfO8//957//fp6gvyIw2ffQlCp9ri9foM2eKCtNz/dON8+MbkhAH/cpAQXUdbEgnFDhUSY8Y0HY8weMc5cJ5nMaCP34ztMTONSi3EhOH21y0tGymZ4+FBU4bKokuT5PJWbYBsrWW4+Zrm7v6XePG/0q3OgTxu26IHx/g15Xx2BbLXO8eI/7ArLrfh7fyy6qc/px+vRPP+yupVVsr1dxj6cf1+1Mp/sF6p/kPFAMKX/g3el02+70te346Tbb09f7Ux0M6JAGhPqe73qu5wUPd3T10/6A8IAYdChXfh0Ee8S4W083Hv+4uY5Y2YvYN7bj59tE7Jv9cdarI3bwECH78/6gcL8gdD3sSBVRIg+LaMPD3ltH0hmAahfZdLTZ9R5mKoU8LNb4zp5YIf6QCd8NWv/8jew/WKX/wdb8f+8HeVc5zYbH1MVC31XOdnCVlRucPW5Rub9+Qvt1YZ8njJeQbV7ybVXimbXv8nCpyp6N39rO49vknbf7w7j6U3jKGPMF59gVXuDd4860i8LxHqGAh5wHlHmYBQEOsEvvFoaNcyAItVeqNHGz4Wpvt1GJuuEMqF2Aqsdlkt0/QwfnC4QvqAiE4HDli7srM9uJYbsp3qui6BlhZo3QP5Gb/SXMs/Jvty4A6teefhkAcdLJ2CZnW7r3hcBUf1MRSNllvrfB/lcJXJrn/QF3Tw3EH7rMo5wFjJGAeUJsJAp3yDANuPkmPiaM+HWmoEPXdxlhrs9ooNezF9XFzcTwuueTn29BDJ/3nRgGT4MZPm9jht9u+IhjKzf89tQ+5diNHYRlh0Ev+v1+cdiXuJIfxEPwQ48eHosfRu3vr5qvmNf/XeqH/wNQSwcIn6/noYwJAADLNQAAUEsBAhQAFAAIAAgAoWBWQdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAChYFZBn6/noYwJAADLNQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACMKAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "true" useBrowserForJS = "false" allowRescaling = "true" /> | <ggb_applet width="569" height="399" version="4.0" ggbBase64="UEsDBBQACAAIAKFgVkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAKFgVkEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vvbcts4En3OfAWKD1uZrUjChQDJrDxTjjOZuCqZpMrZrdl92CmKhCXEFMkhKVtOzeP+z/7Tfsk2AFIiRcuWE1/kSdkGSTQB9Onu0w1IGf+4nCfoXBalytIDhwyxg2QaZbFKpwfOojod+M6PP3w3nspsKidFiE6zYh5WB46rJVUMF1FEuB9HAxp7YuBGHhkENMSDAIuQU+mdUhI5CC1L9TLNfgnnsszDSJ5EMzkP32VRWJmJZ1WVvxyNLi4uhs1Uw6yYjqbTyXBZxg6CZablgVNfvIThOi9dMCNOMSajX9+/s8MPVFpWYRpJB2kVFuqH756NL1QaZxfoQsXV7MDhnuegmVTTGejEsXDQSAvlAEguo0qdyxJebd0anat57hixMNX9z+wVSlbqOChW5yqWxYGDh4xz6vNAEN8jHscuc1BWKJlWtTCpJx01w43Plbyw4+orC7ODqixLJqEeEv3xB6KYYvRCN8Q2FBohbBe2zzCzDbWNaxtuZVz7umtFXSvjWhm9xnNVqkkiD5zTMCkBQpWeFmC+1X1ZXSbSrKd+sFafvACdSvUFhBkGP7GYw3OMX+hfAb+u7hh1lSStWaticctJmym5CHafkn6ToqyZk2Len5PyLWqKaya1eu+iJ+EtaGEq82N+ezOy69TcnNHef9uEwn0QFcejJlTGdXSgcqZla++p5LzU8cICxAPt9gRxiA3hgZdzRAJoPIogGhDhyOVwS3wkdOsh5kGHixjykZYjDJng4D78cT0zmEAcBtNPPYhJRGAiF3GGiIkpF0EkIROXEKOUgQTniMNLenpC9RBMIFfAHfORC2vUIekREGTwItzD9BQxgph+mXiICiT0eMTVoS58vXQYkiKBkSB6QIhqiGgbzSDvI6a1aXhNpfmi6kAUzePmssrylS1AGvhoTXuWnzqs+GychBOZQKI40ZZE6DxMdESYiU6ztEKNEal9Ni3CfKai8kRWFbxVos/hefgurOTyDUiXzdxGNsrS8mORVUdZspinJUJRluDVmrOEtK7patVww1odbruDtzpE69q7ct4MetCilDB/VpSNeBjHx1piTQ2A5Ic0uXxVyPAsz1RXjfHI5JyxXESJilWY/gOcVc+icUGrFKTpqklBzGXNQrIiPrkswYPR8l+yyHQQ4yH2XNcl3MUMeB/Y59J2ESGGAigOM0p9EuhRUBmFOviEP+RUYN/FRBDCKLjC5dVdrJ5anq8sFC7lSvlpoeL29XH5KkviFRRG+6MwrxaFqR1gBYXW6TCdJtJ4iCFbSMzR2SRbnljXYHasT5c53GE7/2RqUEfADJQDrU7rdmJbI6MXtpLCRgYbCdz4mopX/SSgRsK0E9saKXBeu7RaUdJoSXAzjSoNn2GnEzXG83WaX6SqetfcVCo6qzUlVv6XxXwiV/7THZLc2ZB6zVBwlNWvdQWnr//Zuv40k1WoSxFOGQ98z+Pwlwa+b710wz/HZ7JIZVKHAzjCIluUNrpbkRLLSM3h1nbUgIba2H8HBezTWE4L2eidmKrOwm16cdvTe4/NUG+KbH6cnn8CT9pYwHjUrHJcRoXKtb+iCaSQM7n2SdA9hAwUt9/T8QvQRTrTALyVhhYie1HNssIUbkBI0OqwTeQcqjRUGeeE91S0MlNk6j9tD5RNPgMnbpixBRT0b/FUFCb5zNil1jkJL2XRQcEM9z6LN7EB6I0CwA+5HkA7Ry6ldauqjiaUw4AmGFvLWft8BWR8BhVnaQJz9ZK+eKviWJpEbBlBTWV6DloCF0Ipj2vXusR27ehL82QJvDwwjy5J/ehLfWEGglUXaokOG/nDRuoQSHxg9hSHrB700G0ueAsi+XtqV1/aqNAJSZ2CZawnW5P1jKeVXtkm7NuuqUAew3i7m85ESomWNS6XDcIA3QrhrzLvBqZymScqUtUmplE2n4dpjFJTxR2nFfAQwOesK4sQ69BAIdEoWwAXVdNxaDte2WHrwXqmMnlkZYrDm2y1ZsG2qXT5ObXNxDZfa6015oCxBymYYx97XPjAorRjg5UJjAY6v3UqIvt0g+a2e2wXhlf7A0MPBfceUeiSbrxXpPunoFxyh5S7Gz3E2+jhyHbchh2O9icsNhn5W+OgC+aJnOrnG1AetQi1A+XkehDLerQGpcmjxtVVGPYp5stVBOzeXc5T83XOM1gmOoxXTgxh3y+Bz6TM9c7lQ/qpCNNSH41amcbtthNbupjLokVtiTEBvLxowBnioFbv7ioVsqNlarky0UeYaK4AtgFswOYhGAnacFLCtrySJxFU9+n6ENc6Tb2tJbAbNfykzwBrw3JzcaqWrRodym71BbYZYSdcv8ak/aoYY4J3ZOndTZXP1KaxVsF+ZzH0DZbCtaG8IQtY4BPBdrdYbTDaYbOHs9euKbVjrGVewGx6mBrqjw6ChwfO8//957//fp6gvyIw2ffQlCp9ri9foM2eKCtNz/dON8+MbkhAH/cpAQXUdbEgnFDhUSY8Y0HY8weMc5cJ5nMaCP34ztMTONSi3EhOH21y0tGymZ4+FBU4bKokuT5PJWbYBsrWW4+Zrm7v6XePG/0q3OgTxu26IHx/g15Xx2BbLXO8eI/7ArLrfh7fyy6qc/px+vRPP+yupVVsr1dxj6cf1+1Mp/sF6p/kPFAMKX/g3el02+70te346Tbb09f7Ux0M6JAGhPqe73qu5wUPd3T10/6A8IAYdChXfh0Ee8S4W083Hv+4uY5Y2YvYN7bj59tE7Jv9cdarI3bwECH78/6gcL8gdD3sSBVRIg+LaMPD3ltH0hmAahfZdLTZ9R5mKoU8LNb4zp5YIf6QCd8NWv/8jew/WKX/wdb8f+8HeVc5zYbH1MVC31XOdnCVlRucPW5Rub9+Qvt1YZ8njJeQbV7ybVXimbXv8nCpyp6N39rO49vknbf7w7j6U3jKGPMF59gVXuDd4860i8LxHqGAh5wHlHmYBQEOsEvvFoaNcyAItVeqNHGz4Wpvt1GJuuEMqF2Aqsdlkt0/QwfnC4QvqAiE4HDli7srM9uJYbsp3qui6BlhZo3QP5Gb/SXMs/Jvty4A6teefhkAcdLJ2CZnW7r3hcBUf1MRSNllvrfB/lcJXJrn/QF3Tw3EH7rMo5wFjJGAeUJsJAp3yDANuPkmPiaM+HWmoEPXdxlhrs9ooNezF9XFzcTwuueTn29BDJ/3nRgGT4MZPm9jht9u+IhjKzf89tQ+5diNHYRlh0Ev+v1+cdiXuJIfxEPwQ48eHosfRu3vr5qvmNf/XeqH/wNQSwcIn6/noYwJAADLNQAAUEsBAhQAFAAIAAgAoWBWQdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAChYFZBn6/noYwJAADLNQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACMKAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "true" useBrowserForJS = "false" allowRescaling = "true" /> | ||
<br /><br /> | <br /><br /> | ||
− | Die obige Grafik ist das Logo des Studentenklubs [http://www.schuetzengasse.de | + | Die obige Grafik ist das Logo des Studentenklubs Schützengasse [http://www.schuetzengasse.de] der Bauhausuniversität Weimar. Dabei symbolisieren der kleinere innere Kreis den Kopf des Schützen, der große äußere Kreis zusammen mit der Spirale den Arm mit Bogen und schließlich das Bogendreieck die Pfeilspitze. Konstruieren Sie das Logo mit Geogebra.<br /> Bemerkung: Leider hat die jüngere Generation von Studierenden das Logo ein wenig weiter entwickelt. Das ist zwar auch schön, mathematisch jedoch nicht mehr so ergiebig. Geblieben ist die alte Variante am Eingangsbereich des Klubs.<br /> |
[[Bild:Schuetze.png|300px]]<br /> | [[Bild:Schuetze.png|300px]]<br /> | ||
<sup>Eingang Studentenklub Schützengasse</sup> | <sup>Eingang Studentenklub Schützengasse</sup> | ||
+ | |||
+ | <br /><br /> | ||
+ | =Lösung= | ||
+ | [[Lösungen zu den Aufgaben 1]] | ||
[[Kategorie:Linalg]] | [[Kategorie:Linalg]] |
Aktuelle Version vom 17. Dezember 2012, 17:36 Uhr
Inhaltsverzeichnis |
Aufgabe 01
Gegeben sei ein Quader mit den Kantenlängen , und . Berechnen Sie die Länge der Raumdiagonale dieses Quaders.
Aufgabe 02
Gegeben seien die Punkte und . Bestimmen Sie die Gleichung der Geraden in der Form .
Aufgabe 03
Gegeben sie der Kreis mit dem Mittelpunkt und dem Radius . Entwickeln Sie eine Gleichung zur Beschreibung von .
zum Knobeln
Die obige Grafik ist das Logo des Studentenklubs Schützengasse [1] der Bauhausuniversität Weimar. Dabei symbolisieren der kleinere innere Kreis den Kopf des Schützen, der große äußere Kreis zusammen mit der Spirale den Arm mit Bogen und schließlich das Bogendreieck die Pfeilspitze. Konstruieren Sie das Logo mit Geogebra.
Bemerkung: Leider hat die jüngere Generation von Studierenden das Logo ein wenig weiter entwickelt. Das ist zwar auch schön, mathematisch jedoch nicht mehr so ergiebig. Geblieben ist die alte Variante am Eingangsbereich des Klubs.
Eingang Studentenklub Schützengasse