Lösung von Aufgabe 10.4P (WS 12 13): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 2: | Zeile 2: | ||
Bei einer Punktspiegelung ist der Schnittpunkt ''S'' der beiden Spiegelgeraden ''a'' und ''b'' Mittelpunkt der Strecke <math>\overline{PP''}</math>, mit <math>P''=a\circ b(P) </math>.<br /> | Bei einer Punktspiegelung ist der Schnittpunkt ''S'' der beiden Spiegelgeraden ''a'' und ''b'' Mittelpunkt der Strecke <math>\overline{PP''}</math>, mit <math>P''=a\circ b(P) </math>.<br /> | ||
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] | ||
+ | |||
+ | {| class="wikitable" | ||
+ | | Voraussetzung || (V. hier eintragen) | ||
+ | |- | ||
+ | | Behauptung || (Beh. hier eintragen) | ||
+ | |} | ||
+ | <br /> | ||
+ | |||
+ | {| class="wikitable" | ||
+ | !Nr. !!Beweisschritt!!Begründung | ||
+ | |- | ||
+ | | 1 ||(Schritt 1 hier)|| (Begründung 1) | ||
+ | |- | ||
+ | | 2 || (Schritt 2) || (Begründung 2) | ||
+ | |- | ||
+ | | 3 || (Schritt) || (Begründung) | ||
+ | |- | ||
+ | | 4 || (Schritt) || (Begründung) | ||
+ | |} | ||
+ | <br /> |
Aktuelle Version vom 17. Januar 2013, 16:11 Uhr
Beweisen Sie Satz IX.3:
Bei einer Punktspiegelung ist der Schnittpunkt S der beiden Spiegelgeraden a und b Mittelpunkt der Strecke , mit .
Voraussetzung | (V. hier eintragen) |
Behauptung | (Beh. hier eintragen) |
Nr. | Beweisschritt | Begründung |
---|---|---|
1 | (Schritt 1 hier) | (Begründung 1) |
2 | (Schritt 2) | (Begründung 2) |
3 | (Schritt) | (Begründung) |
4 | (Schritt) | (Begründung) |