Lösung von Zusatzaufgabe 12.2P (WS 12 13): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
 
<br />
 
<br />
 
<br />
 
<br />
<ggb_applet width="896" height="662"  version="4.2" ggbBase64="UEsDBBQACAgIAIi+QkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACIvkJCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1a2W7bSBZ9Tn9FgQ/zFFO1Lxk5jdhAMAHi7qCTGQzmjSLLEtsUqSEpL438VNL/kW+aW1UktXlTnKQdTOLYJZK13XPuPfcW7fHPl/MCndu6yavyMCIxjpAt0yrLy+lhtGxPD3T08/OfxlNbTe2kTtBpVc+T9jDiMY1W4+AqJtoNzrPDyKqEpUqwg4mm8oBzkxwYzdMDKjBOE54QamAwumzyZ2X1SzK3zSJJ7dt0ZufJ6ypNWj/nrG0Xz0aji4uLuF89rurpaDqdxJdNFiHYedkcRt2HZzDdxqAL5rtTjMno3yevw/QHedm0SZnaCDmrlvnzn56ML/Iyqy7QRZ61M8DAULBjZvPpDOwkmMPVyHVbgLULm7b5uW1g8Nqlt7qdLyLfLSnd8yfhEyoGgyKU5ed5ZuvDCMcES6WwZsO/CFV1bsu260y6RUf9dOPz3F6Eed0nvyTHRgELeZNPCnsYnSZFA4bl5WkNoMKO6iVcNu1VYSdJ3V+vNkSewhd0yP+wbi6wMyBxGEmCn1IuniqMnwrRAbC+cITaqir8rBgJg96/RxRTjJ66hoSGQiNleITDPcxCQ0PDQyNCHx6G89CVhz489OHsFju765Wh3Y0NS3s72bqdBOxz3xK+PQBbduo1O4kz4j0ibve+Ycjtm/j9u4Z3lzJcKt8QHBrSPdTuh8dLPtAi9lkWkbVVgz/cvOiOv/QrEm3Y/ZekDzJ0MJNisbsmSMr1Zj4Q3cFSsYYtrOX/+++dJdledt6M7f1XlPwhwf8ZCyq8Efd90IeWdO1tMHyxTY1HvRyOuw2hZub6dj7d2nnjtsiMVydEkIDolQrERCBioFEuiikiAnEBl0Qj6VqFmAtcjhjSyPUjDHkNEhp+cB/UEgmYy91UIboR40gwRLxycQQoIK9+gAll0EMIJGCQW524ZZlEXMIF04jDBp3uKactDMbBNSxOESOIubFEISqRpEg57STcSarUbu8wKUUSI+mGgniCcAbRhBEaMWcNRMGiavIB3JktFgMrHse8XCzbDrvufjrPehzbaqt7VqVnR1tg26Rp+8/QCVLWKjOGFLaROJ+Mi2RiCygw3jo/QOg8KVyY+/lPq7JFvQ/QcG9aJ4tZnjZvbdvCqAb9npwnr5PWXr6E3k2/Qb+0z+hju0yLPMuT8l/gJG4KNyEaErxXrz7BG9wtnVZVnb29asB10OV/bF2B5PCYK40FloYryjCDgLsKj4hiseQCKyq1oli56G/SxDm9IbFSnGvOiMSKM0giVzc8EmFpez7YllzawSI0rfOBCvf5VXNUFdnweFHlZXucLNpl7cs1sKp2Rr0op4X14HrxhcInPZtUl28DqizM9e5qAVc4bGAyPa6KqkYQklSAzE67dhJa38ftbOiFfR/se+CepjwbnhNX4U27dhJa3wt4D1vrLCW9lQT3y+SNFxuYfMMtvde4KmpZ5u3r/qLN07POVBIG/LKcT8DhOtw25yRfas7xaMvHxme2Lm0RHKkELpfVsgmuPbjnk/GysW+SdvaizH6zUwjKN4nTxRamDl1XW85sms9hYLjfgZc4Yv8JWw13MzutbW9i4SvkAK1/itfdeue2n+plXc1flefvwGu2tjoe9faMm7TOF8450QSE+syu/C/LmwRkPlsfB8Y3YEXqJAeAbB2IEUqW7ayqfQkMcQv2oJew2yUICcXgkC5kCzuH6he13i29Zw/0vPB1teMBVZPfQUiGxBGer1CDx9e6qHfmpFjMEld7dxAUyZWtN0Dx851U2TZUwIS3B7RhEXxiYW1wp7Bf+LCA6XwUrtHtsW/QJWTO2IDsCKM0gQ8UgzBfHUYHOGaCSYa54UYwLhWFev6PcA4LZw4HhAvcDZUMd7c4BZcMGN6B5tH3j6YAFYWaWsLxhwpOtQpogiJLAUcFqQSHwxVxKH9lMI+/fzAJizUXxJ1FoYiDTMZ6NIVScLbQShn4KfUXATOt5vOkzFDp68E3VXE1rcpoVYkk2MU7SohzVJRQB3HAb9n2z0FxC0hpJHRLQ7cEGnYYTcKC3TLXsBcW7PkZptrMTS3UG2dw7m58Am27VOk//CPPMuurqdHt1K+Bvc49EcyzL0iXPFfkk33Iv9lDGzt1V8NG0jt8dP+N7umlK19jMSOEE0agqKJM8M7VaEy4MhC4mkvJDDHe1Q6ojI2mgkqiJSUGgnu7hrg/T+A+hQuCV6XLttbnp938fGbtwhVGv5bv6qRs3MuuzcR8f9STx4M6pBkXxZwqo4SShFMuPPA6hiIUG0oZNUJyHvSSQXfAXQr3ggqUgfLvCPbJI4KdxYCsVJhpCucHjnGXp0RswKe5FhwegH+HnE9ZzBnlHJ5pToGwR4X6pm6/hk1dL9rJjlpntyuys29gJ3twOv1LAiYWAsiVhkCq1MrIz2fO/rcMQ5pw/sjniyJP8/Z2Ok7yLJQlm5SkO1ycpHelx/Xi5uSuzHE9Ha5SmIZmEpqHMyKhRuEOW2YEJAOu+sSBsWEMdEpQAhnFfIUa5QZwJ7vg3ll7bIB7l1J9O3AJjjWcSRjHQmLw6g5cEhspuBRSS4gEItXXqABP8rqu6i1sj4OWnOw68PHfkkXV/H0foPshf2mhvqEtRAgCSg81N2QGZlR/FuRQGSnmU4KBsw3n3wrvow7vXZ8+2h/vo8eFN4FsaxiUmxgyrgJ3Zj3cUOFoDaqtGJxzqPgKYF+TJjvXXvPjDbztHsnSfl6p8+WzJYsJE4YqoQVThIr+PE44yDOmHCsNRaQGoENdL905XRM4q1Puv751vryGly4Ejm7g5XQPXk4fDy/MGBAbozQ2RmoR3jqB3FMKci+gXpHQylB/CgVFD1Zw+hIKsoAy35qVoVrdouY0UGN3SHm5jyy9fDTpVjFQGSwlEVKJlf6DQMVSGKbdiytCdadIysSQkgVEDPDFtNFfUJ/8LwquF6ju5cuLHdA/fbgddf9ieUAVervxsJllvyU403OBucGEMg2epu56kXJbqiB4N2D2eo2yp4P3L+LrdA37/mVcUVQXv9nTwl56YO97mLqOhe40dRxYONpl4eNeLHzcZUFgg6Go0yARCqo//oOFXRa6pPDipheRn/7ci4U/t1mAgOfavccGGgRzf/ryg4VdFqAsXafhphT96eN9atXtwFgrVn+Ex76pogNvnZ1rzmyfPnwGMR9uImYre5j/P2JG679j9X/00P155PP/AVBLBwigPG2AXQkAAM4pAABQSwECFAAUAAgICACIvkJCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAIi+QkKgPG2AXQkAAM4pAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA9QkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
<ggb_applet width="900" height="600"  version="4.2" ggbBase64="UEsDBBQACAgIAJoAQ0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACaAENCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1a2W7bSBZ9Tn9FQQ/zFFO1Lxk5DTtAMAHi7qCTGQzmJaDIssQ2RWpIyksjP5X0f+Sb5lYVSa1eZCdpB5M4drFY6z3nblXS6OfLWY7ObVVnZXE4IBEeIFskZZoVk8PBojk90IOfn/80mthyYsdVjE7LahY3hwMe0cFyHNQiot3gLD0cWBWzRAl2MNZUHnBu4gOjeXJABcZJzGNCDQxGl3X2rCh/iWe2nseJfZtM7Sx+XSZx4+ecNs382XB4cXERdatHZTUZTibj6LJOBwh2XtSHg/bhGUy3NuiC+e4UYzL898nrMP1BVtRNXCR2gJxUi+z5T09GF1mRlhfoIkubKWBgKMgxtdlkCnISzKE2dN3mIO3cJk12bmsYvFL1Ujez+cB3iwvX/iQ8obwXaIDS7DxLbXU4wBHBUimsWf9vgMoqs0XTdibtosNuutF5Zi/CvO7JL8mxUcBCVmfj3B4OTuO8BsGy4rQCUGFH1QKqdXOV23FcdfXlhshT+IEO2R/WzQVyBiQOB5Lgp5SLpwrjp0K0AKwuPEBNWeZ+VoyEQR8+IIopRk9dQUJBoZAyNOHwDrNQ0FDwUIjQh4fhPHTloQ8PfTi7Qc62vhS0fbEmaScnW5WTgHzuV8KvB2BDTr0iJ3FCfEDE7d4XDLl9E79/V/C2KkNV+YLgUJC2Ubs/Hi/5QInYvSQiK6sGfdhn0W5Jog27+5r0QZL2clIsttcEn7JbzgfC20sqVsCFtfx//7u1JNtLzi1jvMeKkj/E+u+xoMJrht9ZfShJW94Ewxfb1GjY+cNRuyFUT13fVqkbO6vdFpnx7gkRJMB8pQJvIhAxUChnxhQRgbiAKtFIulIh5iyXI4Y0cv0IQ94JCQ1/uLdqiQTM5V6qYN6IcSQYIt51cQQoIO/+ABPKoIcQSMAgtzpxyzKJuIQK04jDBp3jU865MBgHdVicIkYQc2OJQlQiSZFyzpNw51OldnuHSSmSGEk3FLwneM7gNWGERsxJA1YwL+usB3dq83nPiscxK+aLpsWufZ/M0g7HptzonpbJ2fEG2Daum+4ZOkHMWobGEMPWIueTUR6PbQ4ZxlunBwidx7kzcz//aVk0qNMBGt5Nqng+zZL6rW0aGFWj3+Pz+HXc2MuX0LvuNuiX9iF9ZBdJnqVZXPwLlMRN4SZEfYT33quL8IaosExSllX69qoG1UGX/7FVCZtiEVcaCywNV5RhsLer0EKJiSQXWFGpFcWKQKiok9jpvCGRUpxrzojEijNoubqmiYSV7XkvWnxpe4HQpMp6Jtzzq/q4zNO+eV5mRfMinjeLyqdrIFTlZDoqJrn12HrfC4lPcjYuL98GUFmY693VHGo4bGA8eVHmZYXAIqkALztpy3EofR+3s74X9n2w74E7lrK0bycuw5u05TiUvhfQHrbWSko6KQnulslq72tg8jWt9ErjsqhFkTWvu0qTJWetqCQM+GUxG4O+tbitz0m+1Jyj4YaKjc5sVdg86FEBXC7KRR00u9fOJ6NFbd/EzfSoSH+zE7DJN7Fziw1MHbout5zaJJvBwPC+BS92xP4TthrepnZS2U7E3GfIAVrfile1euu1n+plVc5eFefvQGs2tjoadvKM6qTK5k450Rj89Jld6l+a1TF4+XR1HAhfgxSJ8zgAZONAHKB40UzLyqfAYLYgD3oJu12AH6EYFNJZbG5nkP2ixqul1+yenhc+r3Y8oHL8O/iRPm6E9iVq0LxTRb0yx/l8Grvcu4Ugj69stQaKn++kTDehAia8POAa5kEn5tYGdQr7hYc5TOetcIVuj32NLiFwRga8jjBKE3igGPzy1eHgAEdMMAl+xXAjGJeKQj7/RziHhTOHA8IZ7pqTDG83OAWVDBjegubR94+mAC8KObWE4w8VnGoV0GSRlAKOClIJDocr4lD+ymAef/9gEhZpLog7i0IOh5U7igY0hVJwttBKGfgr9RcBMylns7hIUeHTwTdlfjUpi8EyEYmxs3cUE6eoKKYO4oDfounawePmENJI6JaEbjEU7HAwDgu2y+xgLyzY8dNPtR6bGkg3zuDcXfsA2rSh0j/8I0tT65Op4c3Ur4C9yj0RzLMvSBs8l+STfci/XkNrO3G1fiPJLTq6/0b31NKlrrGIEcIJI5BTUSZ4q2o0IlwZMFzNpWSGGK9qB1RGRlNBJdES8i0w7s0c4u48gfrkzgheFS7aWh+ftuPzmbVzlxj9Wryr4qJ2l13rgfnuqMePB3UIM86KOVVGCSUJp1x44HUESSg2lDJqhOQ8+EsG3QF3KdwFFXgGyr8j2MePCHYWAbJSYaYpHB84xm2cEpEBneZacGgA/Q4xn8JZg1HOoU1zCoQ9KtTX/fZr2NRupx1veevJzR7ZydezM3lwOP1LDCYSAsiVcJJURisj78+c/W8RhtTh/JHN5nmWZM3NdJxkaUhL1ilJtrg4uTU8riY3J7cZ0246XKYwCcU4FA9nREKOwh22zAgIBlx1gQNjwxj4KUEJRBTzFXKUa8Ad7wD3PdkP3vfk0QBMcKThXMI4FhKDZrcAk8hIwaWQWoI1EKm+RhZ4klVVWW3gexz8yck2zsd/i+dl/fd9oO6G/KXJ+pp/IUIQ8PaQd0N0YEZ150EO2ZFiPiwYON9w/q3wPurwfk+2ED/aH/Gjx4U4gZhrGCSdGOKuAoVmHeCQ52gNvlsxOO1Q8RXg3hEsW+Ve0eQ1vO0eIdPeL+H58jGTRYQJQ5XQgilCRXcqJxycNKYcKw2ppAagQ3Yv3WldEzixU+5/vnXU3MFLawRH1/Byugcvp4+HF2YMuBujNDZGahHunsDhUwoOX0DWIqGUIQsVClIfrOAMJhTEAWW+NSt9zrpBzWmgxm6R8nIft/Ty0QRcxcDLYCmJkEosIwA4qEgKw7S7viJUtx5JuU8buACLAb6YNvoL+if/ccFuB9VewbzYAv3zx5tR99fLParQ242HzSy6LcHJngvMDSaUadA0ddt1yk2hguBtg9nrMmVPBe+u46tkBfvuSi7Py4vf7GluLz2wdz1S7WKhPVMdBxaOtln4tBcLn7ZZENhgSOs0uAgF+R//wcI2C21QeHHddeTnP/di4c9NFsDguXa32UCDYO4LMD9Y2GbBJ6arRFwXpD9/uku2umkaK+nqDwPZN1i04K2ys+Pc9vnjPYj5eB0xG/HD/P8RM1z9rNV/96H9muTz/wFQSwcIbiabUFsJAADWKQAAUEsBAhQAFAAICAgAmgBDQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACaAENCbiabUFsJAADWKQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPMJAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br />
 
<br />
 +
 +
 +
{| class="wikitable sortable"
 +
! !!
 +
|-
 +
| Voraussetzung || Dreieck ABC mit den Innenwinkeln <math>\alpha ,\beta ,\gamma</math>
 +
|-
 +
| Behauptung || <math>\left| \alpha  \right| +\left| \beta  \right| +\left| \gamma  \right| = 180</math>
 +
|}
 +
 +
<br />
 +
{| class="wikitable sortable"
 +
!Beweisschritte!!Begründung
 +
|-
 +
|1. Wir konstruieren eine Gerade g, für die gilt g ll <math>\overline{AB}</math> ^ C<math>\in</math>g    ||  Parallelenaxiom, Vor.
 +
|-
 +
|2. D(mb,180)(A)=C ^ D(mb,180)(B)=B' ||1.), Def. Punktspiegelung, Def. Mittelpunkt
 +
|-
 +
|2.1 <math>B'C \equiv g</math>  ||1.),2.)
 +
|-
 +
|3. <math>\alpha \tilde {=}\alpha '</math> || Wechselwinkelsatz, 1.),2.),2.1), Eig. Punktspiegelung (winkeltreue), winkelmaßerhaltend
 +
|-
 +
|4. D(ma,180)(A)=A' ^D(ma,180)(B)=C || 1.), Def. Punktspiegelung, Def. Mittelpunkt
 +
|-
 +
|5. <math>\beta \tilde {=} \beta'</math> || 4.),2.1) Wechselwinkelsatz, Eig. Punktspiegelung (winkeltreue), winkelmaßerhaltend
 +
|-
 +
|6. <math>\left| \alpha'  \right| + \left| \beta' \right|+ \left| \gamma  \right|= 180</math> || 4.), 5.),Def. Nebenwinkel, Satz(Nebenwinkel sind supplementär)
 +
|-
 +
|7. <math>\left| \alpha  \right| + \left| \beta \right|+ \left| \gamma  \right|= 180</math> || 3.),5.),6.)
 +
|}
 +
<br />--[[Benutzer:TobiWan|TobiWan]] 00:37, 3. Feb. 2013 (CET)<br />
 
[[Kategorie:Einführung_P]]
 
[[Kategorie:Einführung_P]]

Version vom 3. Februar 2013, 00:37 Uhr

Beweisen Sie den Innenwinkelsatz für Dreiecke mit Hilfe zweier Punktspiegelungen.



Voraussetzung Dreieck ABC mit den Innenwinkeln \alpha ,\beta ,\gamma
Behauptung \left| \alpha  \right| +\left| \beta  \right| +\left| \gamma  \right| = 180


Beweisschritte Begründung
1. Wir konstruieren eine Gerade g, für die gilt g ll \overline{AB} ^ C\ing Parallelenaxiom, Vor.
2. D(mb,180)(A)=C ^ D(mb,180)(B)=B' 1.), Def. Punktspiegelung, Def. Mittelpunkt
2.1 B'C \equiv g 1.),2.)
3. \alpha \tilde {=}\alpha ' Wechselwinkelsatz, 1.),2.),2.1), Eig. Punktspiegelung (winkeltreue), winkelmaßerhaltend
4. D(ma,180)(A)=A' ^D(ma,180)(B)=C 1.), Def. Punktspiegelung, Def. Mittelpunkt
5. \beta \tilde {=} \beta' 4.),2.1) Wechselwinkelsatz, Eig. Punktspiegelung (winkeltreue), winkelmaßerhaltend
6. \left| \alpha'   \right| + \left| \beta' \right|+ \left| \gamma   \right|= 180 4.), 5.),Def. Nebenwinkel, Satz(Nebenwinkel sind supplementär)
7. \left| \alpha   \right| + \left| \beta \right|+ \left| \gamma   \right|= 180 3.),5.),6.)


--TobiWan 00:37, 3. Feb. 2013 (CET)