Beweisen SoSe 13: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Beweisbeispiele) |
*m.g.* (Diskussion | Beiträge) (→Beweisbeispiele) |
||
Zeile 70: | Zeile 70: | ||
==Notwendigkeit des Beweises eines Satzes== | ==Notwendigkeit des Beweises eines Satzes== | ||
::Obige Implikation hinsichtlich der spielerischen Stärke des FC Barcelona in Anhängigkeit der Verfügbarkeit des Weltfußballers Messi wird nur schwer zu beweisen sein und kann damit nicht als Satz im mathematischen Sinne verstanden werden. Mathematische Sätze sind wahre Aussagen und als solche zu beweisen. | ::Obige Implikation hinsichtlich der spielerischen Stärke des FC Barcelona in Anhängigkeit der Verfügbarkeit des Weltfußballers Messi wird nur schwer zu beweisen sein und kann damit nicht als Satz im mathematischen Sinne verstanden werden. Mathematische Sätze sind wahre Aussagen und als solche zu beweisen. | ||
− | =Beweisbeispiele= | + | =Beweisbeispiele (direkte Beweise)= |
==Beispiel 1: Der Scheitelwinkelsatz== | ==Beispiel 1: Der Scheitelwinkelsatz== |
Version vom 2. Mai 2013, 18:51 Uhr
ImplikationenBeispieleBeispiel 1
Beispiel 2Wenn ein Trapez ein Rechteck ist, dann sind sein Diagonalen kongruent zueinander. Beispiel 3Wenn ein Boxer während des Kampfes seinem Gegner den Rücken zukehrt, hat er den Kampf verloren. Beispiel 4Wenn zwei Winkel Stufenwinkel an geschnittenen Parallelen sind, dann sind sie kongruent zueinander. Grundlegender Aufbau
Zusammenhang zur hinreichenden BedingungIst die Aussage wahr, so ist die Bedingung der Implikation hinreichend dafür, dass die Behauptung b gilt. "Versteckte" ImplikationenBeispieleBeispiel 1: StufenwinkelsatzOhne Wenn-Dann
Wenn-Dann-Form
Voraussetzung
Behauptung
Beispiel 2: Innenwinkelsatz für DreieckeOhne Wenn-Dann
Wenn-Dann-Form
Voraussetzung
Behauptung
Beispiel 3: Umkehrung des ThalessatzesOhne Wenn-Dann
Wenn-Dann-Form
Voraussetzung
Behauptung
Implikationen als mathematische Sätzemathematische Sätze
Implikationen als Sätze
Die Implikation einer Behauptung und die Implikation als Behauptung (umgangssprachlich)
Eine gewagte Behauptung
Notwendigkeit des Beweises eines Satzes
Beweisbeispiele (direkte Beweise)Beispiel 1: Der ScheitelwinkelsatzVorabEs sei bereits klar, dass Nebenwinkel supplementär sind (sich zu ° ergänzen). Der Satz
Der BeweisSkizzeVoraussetzung
BehauptungBeweisführung (unter Bezug auf die Beweisskizze)
q.e.d. Beispiel 2: Der starke AußenwinkelsatzVorabBereits klar sei:
Der Satz
SkizzeVoraussetzung
BehauptungBeweisDas können Sie selbst. Ergänzen Sie hier den Beweis. Orientieren Sie sich am Beweis des Scheitelwinkelsatzes. |