Serie 3 SoSe 2013: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 3.01 SoSe 2013 S)
(Aufgabe 3.02 SoSe 2013 S)
Zeile 11: Zeile 11:
 
# ''stumpfer Winkel''
 
# ''stumpfer Winkel''
  
=Aufgabe 3.02 SoSe 2013 S=
+
==Aufgabe 3.02 SoSe 2013 S==
 
Die Begriffe Dreieck, Seiten eines Dreiecks, Eckpunkte eines Dreiecks und Innenwinkel eines Dreiecks seien bereits exakt definiert worden.
 
Die Begriffe Dreieck, Seiten eines Dreiecks, Eckpunkte eines Dreiecks und Innenwinkel eines Dreiecks seien bereits exakt definiert worden.
 
Definieren Sie mathematisch korrekt die Begriffe:
 
Definieren Sie mathematisch korrekt die Begriffe:

Version vom 4. Mai 2013, 17:42 Uhr

Inhaltsverzeichnis

Definitionen und Definieren

Aufgabe 3.01 SoSe 2013 S

Die Begriffe Winkel, Schenkel eines Winkels, Scheitel eines Winkels und Größe eines Winkels seien bereits mathematisch exakt definiert. Definieren Sie Form einer mathematisch korrekten Konventionaldefinitionen die Begriffe:

  1. spitzer Winkel
  2. rechter Winkel
  3. stumpfer Winkel

Aufgabe 3.02 SoSe 2013 S

Die Begriffe Dreieck, Seiten eines Dreiecks, Eckpunkte eines Dreiecks und Innenwinkel eines Dreiecks seien bereits exakt definiert worden. Definieren Sie mathematisch korrekt die Begriffe:

  1. rechtwinkliges Dreieck
  2. Hypotenuse eines rechtwinkligen Dreiecks
  3. Katheten eines rechtwinkligen Dreiecks

Aufgabe 3.03 SoSe 2013 S

Warum handelt es sich im Folgenden nicht um eine korrekte Definition?

Es gibt Dreiecke, die nur spitze Innenwinkel haben, sie heißen spitzwinklige Dreiecke.

Aufgabe 3.04 SoSe 2013 S

Für die Schule hat man sich auf eine besondere Art der Bezeichnung der Stücke von Dreiecken geeinigt.

  • Die Innenwinkel werden mit \alpha, \beta, \gamma bezeichnet.
  • Die Eckpunkte des Dreiecks werden mit den großen lateinischen Buchstaben A, B, C bezeichnet.
  • Die Dreieckseiten werden mit den kleinen lateinischen Buchstaben a, b, c bezeichnet.
  • Es besteht eine Korrelation zwischen den Bezeichnungen dieser Dreieckstücke und ihrer Lage zueinander.

Definieren Sie den Begriff allgemeine schulübliche Dreieckbezeichnungen.

Aufgabe 3.05 SoSe 2013

Definieren Sie die Begriffe:

  1. gleichschenkliges Dreieck,
  2. Schenkel eines gleichschenkligen Dreiecks,
  3. Basis eines gleichschenkligen Dreiecks,
  4. Basiswinkel eines gleichschenkligen Dreiecks.

Implikationen, Begründen und Beweisen

Aufgabe 3.06 SoSe 2013