Lösung von Aufgabe 4.08 S SoSe 13: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=80%| style="background…“)
 
Zeile 3: Zeile 3:
 
| valign="top" |
 
| valign="top" |
 
<!--- ---------------------------------------------------------------- --->
 
<!--- ---------------------------------------------------------------- --->
 
+
==Aufgabe 4.08==
 +
Gegeben seien in der Ebene <math>\varepsilon</math> zwei nicht identische Geraden <math>a</math> und <math>b</math>. Sowohl <math>a</math> als auch <math>b</math> mögen durch eine dritte Gerade <math>c</math> jeweils in genau einem Punkt geschnitten werden. Beweisen Sie: Wenn bei diesem Schnitt kongruente Stufenwinkel entstehen, dann sind <math>a</math> und <math>b</math> parallel zueinander.<br />
 +
Hinweis: Führen Sie den Beweis indirekt, indem Sie annehmen, dass  <math>a </math> und <math>b</math> nicht parallel sind. Jetzt dürfen Sie den schwachen Außenwinkelsatz (Jeder Außenwinkel ist größer als jeder nichtanliegende Innenwinkel.) anwenden.<br />
  
 
==Lösung User ...==
 
==Lösung User ...==

Version vom 13. Mai 2013, 13:54 Uhr

Inhaltsverzeichnis

Aufgabe 4.08

Gegeben seien in der Ebene \varepsilon zwei nicht identische Geraden a und b. Sowohl a als auch b mögen durch eine dritte Gerade c jeweils in genau einem Punkt geschnitten werden. Beweisen Sie: Wenn bei diesem Schnitt kongruente Stufenwinkel entstehen, dann sind a und b parallel zueinander.
Hinweis: Führen Sie den Beweis indirekt, indem Sie annehmen, dass a und b nicht parallel sind. Jetzt dürfen Sie den schwachen Außenwinkelsatz (Jeder Außenwinkel ist größer als jeder nichtanliegende Innenwinkel.) anwenden.

Lösung User ...

Lösung User ...

Lösung User ...


zurück zu Serie 4 SoSe 2013