Lösung von Aufgabe 5.1 P (SoSe 14): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „a) Geben Sie die Menge <math>M</math> aller konvexer Drachenvierecke an.<br /> b) Bilden Sie das kartesische Produkt der Menge <math>M \times M</math>.<br /> c…“)
 
Zeile 4: Zeile 4:
 
d) Untersuchen Sie die Relation <math>R</math> auf ihre Eigenschaften (reflexiv, symmetrisch, transitiv).<br />
 
d) Untersuchen Sie die Relation <math>R</math> auf ihre Eigenschaften (reflexiv, symmetrisch, transitiv).<br />
  
 
+
  a) Raute (R), Quadrat (Q), Drachen (D)
 +
  b) M x M : ((R,R);(R,Q);(R,D);(Q,Q);(Q,R);(Q,D);(D,D);(D,R);(D,Q))
 +
  c) R auf M x M : ((R,R);(R,D);(Q,Q);(Q,R);(Q,D);(D,D))
 +
  d) Die Relation ist reflexiv, sie ist nicht symmetrisch und nicht transitiv  --[[Benutzer:MarieSo|MarieSo]] ([[Benutzer Diskussion:MarieSo|Diskussion]]) 19:18, 26. Mai 2014 (CEST)
  
  

Version vom 26. Mai 2014, 18:18 Uhr

a) Geben Sie die Menge M aller konvexer Drachenvierecke an.
b) Bilden Sie das kartesische Produkt der Menge M \times M.
c) Wir definineren eine Relation R mit R:=A\subseteq B. Bestimmen Sie die Relation R auf M \times M.
d) Untersuchen Sie die Relation R auf ihre Eigenschaften (reflexiv, symmetrisch, transitiv).

  a) Raute (R), Quadrat (Q), Drachen (D)
  b) M x M : ((R,R);(R,Q);(R,D);(Q,Q);(Q,R);(Q,D);(D,D);(D,R);(D,Q))
  c) R auf M x M : ((R,R);(R,D);(Q,Q);(Q,R);(Q,D);(D,D))
  d) Die Relation ist reflexiv, sie ist nicht symmetrisch und nicht transitiv  --MarieSo (Diskussion) 19:18, 26. Mai 2014 (CEST)