Eigenschaften von Kongruenzabbildungen WS 15 16: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „<ggb_applet width="1264" height="918" version="4.0" ggbBase64="UEsDBBQACAgIABJcOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNH…“) |
|||
Zeile 1: | Zeile 1: | ||
+ | Aufgabe: Die Objekte sollen an der vorgegebenen Spiegelachse gespiegelt werden. Erstelle das Spiegelbild und überprüfe deine Lösung mithilfe der Kontrollkästchen. | ||
<ggb_applet width="1264" height="918" version="4.0" ggbBase64="UEsDBBQACAgIABJcOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIABJcOkgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3V3Lcts4Fl2nvwKlRVdNVUsiwKfScrpiO+nYlh/dzkxNzQ4iIYkWRTIk5UdXL+Zj5htm1bt8wPzSXAAkRVEPS4kli3TFAUFc4gLnPnB5CdLdXx4nHrpnUewG/lEDt5QGYr4dOK4/PGpMk0HTavzy7ofukAVD1o8oGgTRhCZHDY1Tus5RY2BpRKFs0DR0zWxqhtlvWphpTVO3GIU2jRmkgdBj7L71gys6YXFIbXZrj9iE9gKbJoLxKEnCt+32w8NDK2PVCqJhezjstx5jp4FgmH581EgP3kJ3cxc9qIKcKApu//OyJ7tvun6cUN9mDcSnMHXf/fCm++D6TvCAHlwnGcGEiQXzGDF3OIJJdSytgdqcKgREQmYn7j2L4dpCVUw6mYQNQUZ93v5GHiEvn08DOe6967DoqKG0sGmqmmrqDRRELvOTlAanvNpZL917lz3I7viR4AQDSoLA61PeE/rzT0QUoqCfeIFlQaAwDNmkyHOKKgsiC00WuqTR5OWaJNUkjSZpNLWB7t3Y7XsMJEu9GKBz/UEEYsvrcfLkMTGe9MRs1vgnmFPs/gHEqgK4SqzhvKL8xH8N+NV4Q3t+krjANYmmWzLNWGJiaJvzJN81UzVjSoi5yJPoK+ZprGEqJ77RRPUCtsBK/BO/CxzVddMsc5T172PIRbCHKXbbma10U/NA8YjTpuqTsEnMDUbtIL3D9R4jHYzDMEHNdYQ7UJgEgTkgrCNNhyq2kMFLE6kmNGhIRRbidFhFwjp0C/7TTNGZgXTojJ81wSgRBkYa0lWEhVFpCEwJCcMEIyUqUOg60uEizh4T3oVqIM2AmmohDcbIbdLEQKjChVAH9gSpGKn8YmwiYiCD94c1buuGxYcOXRJkKMjAvEMwazBpac5AbyGVz8ZI4XL9cJrMQWRPnOwwCcJcFkANDmnm7qSDmvOGb7oe7TMPVohbLkmE7qnHLUIwGgR+gnKDlOeGEQ1Hrh3fsiSBq2J0R+9pjybs8SNQxxlvQWsHfnwTBclJ4E0nfoyQHXhKPubAw4Vjko8aKmqhQSs26IUGo3BsLuUbQAuaxgz4B1GckVPHOeMUM9cASF773tNxxOg4DNz5aXTbYrHpsqntuY5L/X+AsnIuHBc0W3u4sWRrj4U72UiCyLl9ikGF0eO/WBQcNUxitkyzQ7BJDGJZGFzOk2zRda1lYKzrWO8ohsrNPbYptz1o6BBN1TRN0XVT64BpPS1vslRDcmb3uYToI5tNdhi5ua7w47P4OPCcvFlM/4SGyTQSUQP4xojP6b0/9JhQEeFtYUm2x/3g8Vbqhir7+vwUQk2RA+gPBewIXAPRYbkcpmVfloKGjyynUgSNIiiUTNlcJ2/HHSIoRNmXpaAC7ZVDS2eKs1liJWPjxsKhKY3UbDJnxXWfL/BT3016svK/f4MRufY4nSyWl1xNJ3020yFOcOrKgERGWvOM8AaMnmcjtK+kd90xi3zmpWoOAp4G01habcECHGa7E6jKhhQnymX4dxiAPOuwYcRSeuqJME2iKFqVogIvnBZdfYyCyZl//xkUpDSAbjsbZTe2Izfkeoj6sDSM2UzVHDemsLI4xeu4XcLUbb6CADwJh+a6f8fGCUO3ocuGzPMRmPA0GQWRiMzA80ApgsEgGscjxpLP7DFBtB/cQ8v76WAIcL9Fpy6DeBem6TvMR1mfk2kcJ8iZIuojfv5XFlFeximvFvoQgfF6MH2HxtkQ+q7ngCQd9PUvkFYYff1rAO0M1BD1vv43nsJkJ24ycj1xOkIXIKgo8Lzx1//ECZiOj9Db5t9AiZnHdQQE6wGfQTBEAgTmsQlEligR5iQsMteg92KqXFVQAHOwk3yll+2Z3rzpQvNS0xJGSL1wRHk4m8rTo08wzqKERX+XgVOWO6iVEA6gEop4GBQ3ZEzqvBwxHITQofAfc14ZVClGj0eNpslvOJ4gwODlHwUDEpPlTmVuHZJnS0oIliFxegax48NC7JvwMlK8zD3gdVIDvPQUL20PeJ3WAC/zhfGyg8mEgn/0xZ3CTeA9DQO/MYtdqcI9GaKYmyeihGsdoioHUyI1TTIy7hwh1sCSmkrqvqS2oYDw0JHsU6ZLxCXZZwLJe5yPHcBf22O4d49FgJOkoYw4+OQ6sChwINvrZV1AtyhsrKtC3DpOg5uZtPE20l6tkjEb8lo+EPqMUm4/0C3VsqBcOFUunCpXE6t5b9+APvviy0tiGTm5k9BzbTfJNcfjmn7mJxBHMRFILIZHY8ZCHqxe+58j6sc8DyZpCmHXhkj3DwdptQQ0xjXC2T4cnJUU5yZJgbZqhLNzODhLfJ9SwIXn0CqM9HzY8KEGYYOWysfaQ5j1sUZ4qTsJs3pgEqUY64OMmj4uRFVsfcjErStHli0iP5/VWOES5vM5L+AP9JI7IMquvMGmSvnrc9BUQSvVlm6ld+PE2oEd94PAY3QWf9+7LIL4W0AH10/ZgpP9Hitfr2m4gOb1YBCzhENgKRIAbKprNZGGAmtxLkv0pAkmRNcb56UbRUG0/BaILZjn+x9pGMQ/P3dfM5cYSi/ZFD878B1Xqg5Pf6fEmWx2p7LzNwbzP50XTQptIIDjVQI43l4Ax9UTACkJAL9okmkD/E9W4X+yPf4n1cNfLRuAtsMszFIBnK4SwOn2AjitngAWPNAuBbAiDZaiJpNheYXMFFomxmbyWJoeK/ZCi730i73YeYWnzTYT8fLkWUHWO0uhbakgr5Bl20jjX39GS9NxzSxNpLU68z+VvcNeyM1VUD5ZEq+plMViSJ9Up+SpXUEBZdm/LPnXrFX2r4ICydOETa2laYrVIUrH0hXFIMaHJjbSzGHZmnCFZDYfR9ymMtsw1TNYv8CXNWDwbfnfCid79p76/VSDVObCs6Ydpn7PaoCXVlLnXeJ1XgO8jD3q10WN8GruA7BeDQDLDDJ/iLtLwC5rAJi6T8CuagBY+en1LvG6rgFeC4mJXQJ2UyPAXgqvTdKVn+RtxplMLp7LtOKFTCj2oNC5s0PU4CaMqMk1E1GL412+L0kziUR2OJIdurLDO9nhWHboyQ4nskNfdhhA0QGprr+7WZG+JAe69w+v1pnN7+FHh7ODZ0musbo3cWWc3cPBeeY786xUnZC+OxykFxZ1UiOcx4eDc6bQddxi6R0OzEophKiTNk8OB+b8XgDX0T37hwN0OSSukz4HhwPz4s7sOgEdHg7QC68aVBnn+Tvw32pwB25l4nmpHd3rAPu9+oDhl8br2R3wv8n0wu8L6Yfh+sTB3A744aHsgM/cQSfzBuY+dsBvsI8wTQsNF2D+tP0+wk8vso8w2qEpLMuK73HX7NkqsM+2B/usSmDnz2z2uEX8fBXY59uDfV4lsI1X0OyLVWBfbA/2RSXB1vcHdm8V2L3twe5VCezcjexxo/3lKrAvtwf7skpgq68A9tUqsK+2B/uqSmCTV1ggr1eBfb092NdVAhu/gs++WQX2zfZg31QS7N1EIysedhffqjkrvlVzXnyr5qL4Vk0vr+gzTy0fiOcVc6bp8uH4+pd7SHEYo+Iw3OIw7orDGBeH4RWHMSkOwy8OI8gr/MH6d7wdRAqatee3g5ao4/7fCxptZFmvOZf1G2+auMqbrRee01dKGotP8uv06POuUrJY8gGaKuffFx73V0sY5S0BdXqE6lVKFOVdA3WSxKRSkijvK6jVwu1XShQL23HrZBVBpURRXrbrtGiHlZLEwv6Fqn3Cb5NXb1c+Y/6y/u65LNovB/Lq7f6eMu/BfspfH4te5btjReQL3x3DEmi1o62VTPrHFtDAfWTOXEpu3RfJ+gvAPIYRSIxfkE6LfykfrB0ajho/fpkGyc/558xkVXQxD2gC1zTmO3hNtY0TGiU3PNuH5CqstDrEJJZlGIrSMUz+VzTER60MBWt6xyCqSUxVmfvQ3fMgkaUg9TcHiRweSB3dNA1sKapikPT7dy3dIh2joyoK6SiAn7kKpXbxDzXwevaHvt79H1BLBwi8VWrdqgsAAIVsAABQSwECFAAUAAgICAASXDpI1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIABJcOki8VWrdqgsAAIVsAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQQwAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | <ggb_applet width="1264" height="918" version="4.0" ggbBase64="UEsDBBQACAgIABJcOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIABJcOkgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3V3Lcts4Fl2nvwKlRVdNVUsiwKfScrpiO+nYlh/dzkxNzQ4iIYkWRTIk5UdXL+Zj5htm1bt8wPzSXAAkRVEPS4kli3TFAUFc4gLnPnB5CdLdXx4nHrpnUewG/lEDt5QGYr4dOK4/PGpMk0HTavzy7ofukAVD1o8oGgTRhCZHDY1Tus5RY2BpRKFs0DR0zWxqhtlvWphpTVO3GIU2jRmkgdBj7L71gys6YXFIbXZrj9iE9gKbJoLxKEnCt+32w8NDK2PVCqJhezjstx5jp4FgmH581EgP3kJ3cxc9qIKcKApu//OyJ7tvun6cUN9mDcSnMHXf/fCm++D6TvCAHlwnGcGEiQXzGDF3OIJJdSytgdqcKgREQmYn7j2L4dpCVUw6mYQNQUZ93v5GHiEvn08DOe6967DoqKG0sGmqmmrqDRRELvOTlAanvNpZL917lz3I7viR4AQDSoLA61PeE/rzT0QUoqCfeIFlQaAwDNmkyHOKKgsiC00WuqTR5OWaJNUkjSZpNLWB7t3Y7XsMJEu9GKBz/UEEYsvrcfLkMTGe9MRs1vgnmFPs/gHEqgK4SqzhvKL8xH8N+NV4Q3t+krjANYmmWzLNWGJiaJvzJN81UzVjSoi5yJPoK+ZprGEqJ77RRPUCtsBK/BO/CxzVddMsc5T172PIRbCHKXbbma10U/NA8YjTpuqTsEnMDUbtIL3D9R4jHYzDMEHNdYQ7UJgEgTkgrCNNhyq2kMFLE6kmNGhIRRbidFhFwjp0C/7TTNGZgXTojJ81wSgRBkYa0lWEhVFpCEwJCcMEIyUqUOg60uEizh4T3oVqIM2AmmohDcbIbdLEQKjChVAH9gSpGKn8YmwiYiCD94c1buuGxYcOXRJkKMjAvEMwazBpac5AbyGVz8ZI4XL9cJrMQWRPnOwwCcJcFkANDmnm7qSDmvOGb7oe7TMPVohbLkmE7qnHLUIwGgR+gnKDlOeGEQ1Hrh3fsiSBq2J0R+9pjybs8SNQxxlvQWsHfnwTBclJ4E0nfoyQHXhKPubAw4Vjko8aKmqhQSs26IUGo3BsLuUbQAuaxgz4B1GckVPHOeMUM9cASF773tNxxOg4DNz5aXTbYrHpsqntuY5L/X+AsnIuHBc0W3u4sWRrj4U72UiCyLl9ikGF0eO/WBQcNUxitkyzQ7BJDGJZGFzOk2zRda1lYKzrWO8ohsrNPbYptz1o6BBN1TRN0XVT64BpPS1vslRDcmb3uYToI5tNdhi5ua7w47P4OPCcvFlM/4SGyTQSUQP4xojP6b0/9JhQEeFtYUm2x/3g8Vbqhir7+vwUQk2RA+gPBewIXAPRYbkcpmVfloKGjyynUgSNIiiUTNlcJ2/HHSIoRNmXpaAC7ZVDS2eKs1liJWPjxsKhKY3UbDJnxXWfL/BT3016svK/f4MRufY4nSyWl1xNJ3020yFOcOrKgERGWvOM8AaMnmcjtK+kd90xi3zmpWoOAp4G01habcECHGa7E6jKhhQnymX4dxiAPOuwYcRSeuqJME2iKFqVogIvnBZdfYyCyZl//xkUpDSAbjsbZTe2Izfkeoj6sDSM2UzVHDemsLI4xeu4XcLUbb6CADwJh+a6f8fGCUO3ocuGzPMRmPA0GQWRiMzA80ApgsEgGscjxpLP7DFBtB/cQ8v76WAIcL9Fpy6DeBem6TvMR1mfk2kcJ8iZIuojfv5XFlFeximvFvoQgfF6MH2HxtkQ+q7ngCQd9PUvkFYYff1rAO0M1BD1vv43nsJkJ24ycj1xOkIXIKgo8Lzx1//ECZiOj9Db5t9AiZnHdQQE6wGfQTBEAgTmsQlEligR5iQsMteg92KqXFVQAHOwk3yll+2Z3rzpQvNS0xJGSL1wRHk4m8rTo08wzqKERX+XgVOWO6iVEA6gEop4GBQ3ZEzqvBwxHITQofAfc14ZVClGj0eNpslvOJ4gwODlHwUDEpPlTmVuHZJnS0oIliFxegax48NC7JvwMlK8zD3gdVIDvPQUL20PeJ3WAC/zhfGyg8mEgn/0xZ3CTeA9DQO/MYtdqcI9GaKYmyeihGsdoioHUyI1TTIy7hwh1sCSmkrqvqS2oYDw0JHsU6ZLxCXZZwLJe5yPHcBf22O4d49FgJOkoYw4+OQ6sChwINvrZV1AtyhsrKtC3DpOg5uZtPE20l6tkjEb8lo+EPqMUm4/0C3VsqBcOFUunCpXE6t5b9+APvviy0tiGTm5k9BzbTfJNcfjmn7mJxBHMRFILIZHY8ZCHqxe+58j6sc8DyZpCmHXhkj3DwdptQQ0xjXC2T4cnJUU5yZJgbZqhLNzODhLfJ9SwIXn0CqM9HzY8KEGYYOWysfaQ5j1sUZ4qTsJs3pgEqUY64OMmj4uRFVsfcjErStHli0iP5/VWOES5vM5L+AP9JI7IMquvMGmSvnrc9BUQSvVlm6ld+PE2oEd94PAY3QWf9+7LIL4W0AH10/ZgpP9Hitfr2m4gOb1YBCzhENgKRIAbKprNZGGAmtxLkv0pAkmRNcb56UbRUG0/BaILZjn+x9pGMQ/P3dfM5cYSi/ZFD878B1Xqg5Pf6fEmWx2p7LzNwbzP50XTQptIIDjVQI43l4Ax9UTACkJAL9okmkD/E9W4X+yPf4n1cNfLRuAtsMszFIBnK4SwOn2AjitngAWPNAuBbAiDZaiJpNheYXMFFomxmbyWJoeK/ZCi730i73YeYWnzTYT8fLkWUHWO0uhbakgr5Bl20jjX39GS9NxzSxNpLU68z+VvcNeyM1VUD5ZEq+plMViSJ9Up+SpXUEBZdm/LPnXrFX2r4ICydOETa2laYrVIUrH0hXFIMaHJjbSzGHZmnCFZDYfR9ymMtsw1TNYv8CXNWDwbfnfCid79p76/VSDVObCs6Ydpn7PaoCXVlLnXeJ1XgO8jD3q10WN8GruA7BeDQDLDDJ/iLtLwC5rAJi6T8CuagBY+en1LvG6rgFeC4mJXQJ2UyPAXgqvTdKVn+RtxplMLp7LtOKFTCj2oNC5s0PU4CaMqMk1E1GL412+L0kziUR2OJIdurLDO9nhWHboyQ4nskNfdhhA0QGprr+7WZG+JAe69w+v1pnN7+FHh7ODZ0musbo3cWWc3cPBeeY786xUnZC+OxykFxZ1UiOcx4eDc6bQddxi6R0OzEophKiTNk8OB+b8XgDX0T37hwN0OSSukz4HhwPz4s7sOgEdHg7QC68aVBnn+Tvw32pwB25l4nmpHd3rAPu9+oDhl8br2R3wv8n0wu8L6Yfh+sTB3A744aHsgM/cQSfzBuY+dsBvsI8wTQsNF2D+tP0+wk8vso8w2qEpLMuK73HX7NkqsM+2B/usSmDnz2z2uEX8fBXY59uDfV4lsI1X0OyLVWBfbA/2RSXB1vcHdm8V2L3twe5VCezcjexxo/3lKrAvtwf7skpgq68A9tUqsK+2B/uqSmCTV1ggr1eBfb092NdVAhu/gs++WQX2zfZg31QS7N1EIysedhffqjkrvlVzXnyr5qL4Vk0vr+gzTy0fiOcVc6bp8uH4+pd7SHEYo+Iw3OIw7orDGBeH4RWHMSkOwy8OI8gr/MH6d7wdRAqatee3g5ao4/7fCxptZFmvOZf1G2+auMqbrRee01dKGotP8uv06POuUrJY8gGaKuffFx73V0sY5S0BdXqE6lVKFOVdA3WSxKRSkijvK6jVwu1XShQL23HrZBVBpURRXrbrtGiHlZLEwv6Fqn3Cb5NXb1c+Y/6y/u65LNovB/Lq7f6eMu/BfspfH4te5btjReQL3x3DEmi1o62VTPrHFtDAfWTOXEpu3RfJ+gvAPIYRSIxfkE6LfykfrB0ajho/fpkGyc/558xkVXQxD2gC1zTmO3hNtY0TGiU3PNuH5CqstDrEJJZlGIrSMUz+VzTER60MBWt6xyCqSUxVmfvQ3fMgkaUg9TcHiRweSB3dNA1sKapikPT7dy3dIh2joyoK6SiAn7kKpXbxDzXwevaHvt79H1BLBwi8VWrdqgsAAIVsAABQSwECFAAUAAgICAASXDpI1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIABJcOki8VWrdqgsAAIVsAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQQwAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Aktuelle Version vom 26. Januar 2016, 11:37 Uhr
Aufgabe: Die Objekte sollen an der vorgegebenen Spiegelachse gespiegelt werden. Erstelle das Spiegelbild und überprüfe deine Lösung mithilfe der Kontrollkästchen.