Eigenschaften einer zentrischen Streckung WS 15 16: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<ggb_applet width="1280" height="863" version="4.0" ggbBase64="UEsDBBQACAgIAANdOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNH…“)
 
 
Zeile 1: Zeile 1:
 +
In der folgenden Aufgabe findest du 3 unterschiedliche zentrische Streckungsdreiecke.
 +
Finde heraus, welches Faktor zu dem jeweiligen Dreieck gehört!
 
<ggb_applet width="1280" height="863"  version="4.0" ggbBase64="UEsDBBQACAgIAANdOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAANdOkgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VxZb6PIFn7u+RUlP9yntk1Vsbmv06MsnU46memR0jO6ulejEUvZpoOBBpxlND/+nqoCDN5i4iXYUhLAnFrOd7avoOL+z09jHz2wOPHC4KSFO0oLscAJXS8YnrQm6aBttn7++FN/yMIhs2MLDcJ4bKUnLZVLeu5JyySuzTSDti1Nx23VUoy2ORjgNrWJRgYG1Wy710LoKfE+BOGv1pglkeWwO2fExtZt6FipGHiUptGHbvfx8bGTD9UJ42F3OLQ7T4nbQjDNIDlpZScfoLtKo0cqxImi4O5/frmV3be9IEmtwGEtxFWYeB9/etd/9AI3fESPnpuOQGHS01toxLzhCJTCigJadblYBJBEzEm9B5ZA49Kl0DodRy0hZgX8/jt5hvxCoRZyvQfPZfFJS+lgTVF1GCn/MVoojD0WpJkwzgbt5t31Hzz2KPvlZ2JItYXSMPRti3eJ/vkHEYUo6D0/YHkgcNB1eUuRnylUHog8qPKgSRlVNlelqCplVCmj0hZ68BLP9tlJa2D5CYDoBYMYDFhcJ+mzz8R8sg+m6uP3oFPi/Q3ClGMqURcIv+e/OvyqOdglJXFp1DSe1Bw0HxIrZo0xySZj0mLMnjY/JNGWqKmvQFfOYS09tZKaMJT4Eb9zI1JSY0R5vdmAuroXFfvdPFT6WXSgZMRlM0umbJzweKE9pPW422OkQWzoBni5hnAPDgZBEA0Ia0jV4BKbSOdHA1EDbqiIIhNxOUyRCA7NhD+qITrTkQad8U8NiEmEYSAVaRRhEVMqgkhCIi4hRgkFCU1DGjTiw2PCu6A6UnW4oiZSYY48JA0MghQawjUMTxDFiPLG2EBERzrvD6s81HWTTx26JEhXkI55hxDVENEymkHeRJRro2dweUE0SSsQOWM3P03DqLAFSEM+mqY9mZ8qWfFd37ds5kOpuOOWROjB8nlEiIEGYZCi3IhEfjaMrWjkOckdS1NolaDv1oN1a6Xs6RKkk3xsIeuEQfJbHKbnoT8ZBwlCTugrxZxDH5fOSTFruKClG2r5hla6oZfOjYXjhnAHTRIG44dxkotbrnvNJaapAZD8GvjPZzGz7qPQq6rR74qq02cTx/dczwr+AGflo3BcUFGERLrKi5CpavlMwti9e07AhdHTf1kc8iRjdHAPaohh6mZP13nOeZa3qGl2TGKapEcw1lUKNSZxLB58RO3ouGdSVdcpxio1oc3iW6SXGY89FCaynlih/TD23PL5dXIW+m6BhVD/3IrSSSzoA+TGmOt0Ggx9JlxEJFuozc69HT7dSd+gsq9vzxFcKXJ8eyhgR5AaiAY6DrOjLY9Chk+skFKEjCIklNzZPLe4D6AJCXG05VFIgffKqWWK4lxLrOTDeIlIaEqrEjbC9XmdnwReeptfpJ5zn2mKpfyvk7HNCgeqdom31GW/O+Ng/XsWB8zP/BkMOQkniQzPkqu7zPHGcClvZIBY3Fi/wwTkpy4bxiyfty+ImYRL3FXKnjr3sejqMg7H18HDN/CEmQn0u/ks+4kTexH3N2RDDbhnU59yvcSCEuKW2/EABNUdXioAnpRDA6E5SUdhLJgXZBQ48rjz2RhoFkqFcwn/LGA+FQSO44lC+zsktRkzTO0Ftxc6mnBJy49GFid5mdK+9cziCgyiv19CdxYcwF5oAAEeSdtGjEmvkPOFkwi6E7FUyVCAdoKeMhL+nNH2v+VRsleuKY+vSkqWn86YCXxHgvQCXGfHAxfdA1znhw+XvmXvcsLx2ApcFAgK+FvoPw/DoDUlJZbCgxJZmDsbsggHUSI0SfP7kN58qB5YijlSzIIDVH1bDpgNs8A+csDcAkVX1TKQAkG5h1VYImpVmlUlcXLluS4T5LS72rglOOetmxcyDZfMi+uYd7kPJmzIr4qJOC94Yf2J1vTDqTe1SeZOSuZOZtHXK7BnPwLZJJGV0RtHvud4aeEwPnfs6yCFOslEoZgvf/eMRZx1fA2+xVaQ8CcbUqZUVtfE2WoOzjnMJIO5jdUjAtpuDtBKBnQ7R5ocMM7V4nVx+MUrr/VtrOyh2n86IsDUPeB1efh45eyobe6RHl1I3vNJ8p7LZfSISLGBFHMlPWKvokdkf/QIa1QYmKdnsYzfOT0avK6arJjo6+mRPkOPyDGVbbc5QKuz/OiYeChrDs5klh61ySEjXa1fnw+/ftHMPsYeyv3V4cOVu7O+B7iuDx8uY8twrUOOPkvWcyVZz/UyckSlmCfFhpIcjV5Fjui+nx0tsu6OuJG3yUp7C1449SVcLOUyZzomZjRsDMz58wwtr9dUOSKcR43BuV34c77SpviAga6Wri+HX7ra6k5r14XnWylbXLqIrElf5krX539ZUZj8+6UiVaGoWZM3tUcpiefpZTePSxaievUCqlf1Ub1qFqrm/l31+gVQr+uDet0sUPFuUV1CXjMMJIUtLkgF0IV0ttzQKzccFhec4K5nlsU0t2SfnZFdJwxcT6ZuvqUqk/abwITXcs/d8vbVT1aOihA3DO28bhXvkdr6UfHihsFdbBMo3quYh+zd1UJ3cwTsOLfPtl4TrkE5sk1BVJa1m7lKeFqfcpw2jHIUbxO1/cF69gKsZ/VhPWsorLvZwrYQ1fMXUD2vj+p5s1AlZLfOumRnYJnnnpV57vlqgozLDZ1yQ6tMkO0NCDJ+O4IcLjP5XrcZbk4iNp/uyrfpPf2AScTcbsOmwa3PLJjbWDnkzXBzmw6bhnex9bAA/KCf1Ver3e0RkeQdbQ5bSDw+yQqndDRZ3W7nCuKn+tTjU7OoB551/D3gevEirhf1cb1oKK69BvrrX/gVHvsXbhy2e/TZyxexvazvs5fN8tkd59glG3DLi4mpq8ntuKvXIaTcdFBeh7jldQhb1+kXb9d9u5XIZN7qb7CjdxOqtq3pVqgAnVmJ0AMmanPbepuGdp4TjnGnEFuzsO0R7rmdWfK/bQ4H8WrKv8sQr6b8L/m2wtm8/n11hp613/d5u+Vfe7L2SxZlG4UzXz1OF4+H9XCkjtGWlOT7eqa7b5rpcPHq1zisBy2z3DX7fq6q8W6k8U7nzGbZXN69OV1tvmAyZrHnTJ+XFc14fzC3SYav3jEUkyi0R4na61G9t74J8UaaLXHLYqLrkPOlWpaKcklXAnMmqo6x0TPUnonxBrpWJ2KHoc+sKRX1Z4cuOcsm64b1I+jrYJCwVDyZNDUZMNRcGWHZV9KggffE3PJkHCsSTFdiWA+IcaOAUCUQ2laA6Gj1oAiaCIWhbQEKXBeKqEFQGCaVL/Mp3Y1XbJbvf9TLgD/ePL+frpXfTzfJ76dL8jumHRXrqmKYOuhqGvSti1lcT714pwXrKYqBD3FPzVdT8ZDZgZe0ENybqvi/m/coU+hP1EWVj/+UX4q3Wo2i3xltimX/Dgpu2MSMYqymtOtlFFoPiDnUmwCEto3USutWmbRBUFCzJ/+ziJItQFEzOB6aCIS+DRLWronEpIlIaNtIE8p8dHTLXxLIr/Ovlf74f1BLBwhoOEUEOQoAAPNaAABQSwECFAAUAAgICAADXTpI1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAANdOkhoOEUEOQoAAPNaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA0AoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1280" height="863"  version="4.0" ggbBase64="UEsDBBQACAgIAANdOkgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAANdOkgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VxZb6PIFn7u+RUlP9yntk1Vsbmv06MsnU46memR0jO6ulejEUvZpoOBBpxlND/+nqoCDN5i4iXYUhLAnFrOd7avoOL+z09jHz2wOPHC4KSFO0oLscAJXS8YnrQm6aBttn7++FN/yMIhs2MLDcJ4bKUnLZVLeu5JyySuzTSDti1Nx23VUoy2ORjgNrWJRgYG1Wy710LoKfE+BOGv1pglkeWwO2fExtZt6FipGHiUptGHbvfx8bGTD9UJ42F3OLQ7T4nbQjDNIDlpZScfoLtKo0cqxImi4O5/frmV3be9IEmtwGEtxFWYeB9/etd/9AI3fESPnpuOQGHS01toxLzhCJTCigJadblYBJBEzEm9B5ZA49Kl0DodRy0hZgX8/jt5hvxCoRZyvQfPZfFJS+lgTVF1GCn/MVoojD0WpJkwzgbt5t31Hzz2KPvlZ2JItYXSMPRti3eJ/vkHEYUo6D0/YHkgcNB1eUuRnylUHog8qPKgSRlVNlelqCplVCmj0hZ68BLP9tlJa2D5CYDoBYMYDFhcJ+mzz8R8sg+m6uP3oFPi/Q3ClGMqURcIv+e/OvyqOdglJXFp1DSe1Bw0HxIrZo0xySZj0mLMnjY/JNGWqKmvQFfOYS09tZKaMJT4Eb9zI1JSY0R5vdmAuroXFfvdPFT6WXSgZMRlM0umbJzweKE9pPW422OkQWzoBni5hnAPDgZBEA0Ia0jV4BKbSOdHA1EDbqiIIhNxOUyRCA7NhD+qITrTkQad8U8NiEmEYSAVaRRhEVMqgkhCIi4hRgkFCU1DGjTiw2PCu6A6UnW4oiZSYY48JA0MghQawjUMTxDFiPLG2EBERzrvD6s81HWTTx26JEhXkI55hxDVENEymkHeRJRro2dweUE0SSsQOWM3P03DqLAFSEM+mqY9mZ8qWfFd37ds5kOpuOOWROjB8nlEiIEGYZCi3IhEfjaMrWjkOckdS1NolaDv1oN1a6Xs6RKkk3xsIeuEQfJbHKbnoT8ZBwlCTugrxZxDH5fOSTFruKClG2r5hla6oZfOjYXjhnAHTRIG44dxkotbrnvNJaapAZD8GvjPZzGz7qPQq6rR74qq02cTx/dczwr+AGflo3BcUFGERLrKi5CpavlMwti9e07AhdHTf1kc8iRjdHAPaohh6mZP13nOeZa3qGl2TGKapEcw1lUKNSZxLB58RO3ouGdSVdcpxio1oc3iW6SXGY89FCaynlih/TD23PL5dXIW+m6BhVD/3IrSSSzoA+TGmOt0Ggx9JlxEJFuozc69HT7dSd+gsq9vzxFcKXJ8eyhgR5AaiAY6DrOjLY9Chk+skFKEjCIklNzZPLe4D6AJCXG05VFIgffKqWWK4lxLrOTDeIlIaEqrEjbC9XmdnwReeptfpJ5zn2mKpfyvk7HNCgeqdom31GW/O+Ng/XsWB8zP/BkMOQkniQzPkqu7zPHGcClvZIBY3Fi/wwTkpy4bxiyfty+ImYRL3FXKnjr3sejqMg7H18HDN/CEmQn0u/ks+4kTexH3N2RDDbhnU59yvcSCEuKW2/EABNUdXioAnpRDA6E5SUdhLJgXZBQ48rjz2RhoFkqFcwn/LGA+FQSO44lC+zsktRkzTO0Ftxc6mnBJy49GFid5mdK+9cziCgyiv19CdxYcwF5oAAEeSdtGjEmvkPOFkwi6E7FUyVCAdoKeMhL+nNH2v+VRsleuKY+vSkqWn86YCXxHgvQCXGfHAxfdA1znhw+XvmXvcsLx2ApcFAgK+FvoPw/DoDUlJZbCgxJZmDsbsggHUSI0SfP7kN58qB5YijlSzIIDVH1bDpgNs8A+csDcAkVX1TKQAkG5h1VYImpVmlUlcXLluS4T5LS72rglOOetmxcyDZfMi+uYd7kPJmzIr4qJOC94Yf2J1vTDqTe1SeZOSuZOZtHXK7BnPwLZJJGV0RtHvud4aeEwPnfs6yCFOslEoZgvf/eMRZx1fA2+xVaQ8CcbUqZUVtfE2WoOzjnMJIO5jdUjAtpuDtBKBnQ7R5ocMM7V4nVx+MUrr/VtrOyh2n86IsDUPeB1efh45eyobe6RHl1I3vNJ8p7LZfSISLGBFHMlPWKvokdkf/QIa1QYmKdnsYzfOT0avK6arJjo6+mRPkOPyDGVbbc5QKuz/OiYeChrDs5klh61ySEjXa1fnw+/ftHMPsYeyv3V4cOVu7O+B7iuDx8uY8twrUOOPkvWcyVZz/UyckSlmCfFhpIcjV5Fjui+nx0tsu6OuJG3yUp7C1449SVcLOUyZzomZjRsDMz58wwtr9dUOSKcR43BuV34c77SpviAga6Wri+HX7ra6k5r14XnWylbXLqIrElf5krX539ZUZj8+6UiVaGoWZM3tUcpiefpZTePSxaievUCqlf1Ub1qFqrm/l31+gVQr+uDet0sUPFuUV1CXjMMJIUtLkgF0IV0ttzQKzccFhec4K5nlsU0t2SfnZFdJwxcT6ZuvqUqk/abwITXcs/d8vbVT1aOihA3DO28bhXvkdr6UfHihsFdbBMo3quYh+zd1UJ3cwTsOLfPtl4TrkE5sk1BVJa1m7lKeFqfcpw2jHIUbxO1/cF69gKsZ/VhPWsorLvZwrYQ1fMXUD2vj+p5s1AlZLfOumRnYJnnnpV57vlqgozLDZ1yQ6tMkO0NCDJ+O4IcLjP5XrcZbk4iNp/uyrfpPf2AScTcbsOmwa3PLJjbWDnkzXBzmw6bhnex9bAA/KCf1Ver3e0RkeQdbQ5bSDw+yQqndDRZ3W7nCuKn+tTjU7OoB551/D3gevEirhf1cb1oKK69BvrrX/gVHvsXbhy2e/TZyxexvazvs5fN8tkd59glG3DLi4mpq8ntuKvXIaTcdFBeh7jldQhb1+kXb9d9u5XIZN7qb7CjdxOqtq3pVqgAnVmJ0AMmanPbepuGdp4TjnGnEFuzsO0R7rmdWfK/bQ4H8WrKv8sQr6b8L/m2wtm8/n11hp613/d5u+Vfe7L2SxZlG4UzXz1OF4+H9XCkjtGWlOT7eqa7b5rpcPHq1zisBy2z3DX7fq6q8W6k8U7nzGbZXN69OV1tvmAyZrHnTJ+XFc14fzC3SYav3jEUkyi0R4na61G9t74J8UaaLXHLYqLrkPOlWpaKcklXAnMmqo6x0TPUnonxBrpWJ2KHoc+sKRX1Z4cuOcsm64b1I+jrYJCwVDyZNDUZMNRcGWHZV9KggffE3PJkHCsSTFdiWA+IcaOAUCUQ2laA6Gj1oAiaCIWhbQEKXBeKqEFQGCaVL/Mp3Y1XbJbvf9TLgD/ePL+frpXfTzfJ76dL8jumHRXrqmKYOuhqGvSti1lcT714pwXrKYqBD3FPzVdT8ZDZgZe0ENybqvi/m/coU+hP1EWVj/+UX4q3Wo2i3xltimX/Dgpu2MSMYqymtOtlFFoPiDnUmwCEto3USutWmbRBUFCzJ/+ziJItQFEzOB6aCIS+DRLWronEpIlIaNtIE8p8dHTLXxLIr/Ovlf74f1BLBwhoOEUEOQoAAPNaAABQSwECFAAUAAgICAADXTpI1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAANdOkhoOEUEOQoAAPNaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA0AoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Aktuelle Version vom 26. Januar 2016, 11:42 Uhr

In der folgenden Aufgabe findest du 3 unterschiedliche zentrische Streckungsdreiecke. Finde heraus, welches Faktor zu dem jeweiligen Dreieck gehört!