Eigenschaften von Kongruenzabbildungen SoSe 16: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<ggb_applet width="1280" height="863" version="4.0" ggbBase64="UEsDBBQACAgIAGJc7EgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNH…“)
 
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 1: Zeile 1:
<ggb_applet width="1280" height="863"  version="4.0" ggbBase64="UEsDBBQACAgIAGJc7EgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAGJc7EgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vhbb9s2FH5uf8WBHoYNiG1RN8ud06LJUCxA2g5INwx7oyTGZiOJmkj5UvTH75CUZNlusia9IBsQh6J4eC7fudrzF5sihxWrJRflqUPGrgOsTEXGy8Wp06jrUey8eP50vmBiwZKawrWoC6pOnUBT8uzUyVjMrpPEG4XMS0dB5MWjJI3dUZL4s2RKrv04DB2AjeTPSvGGFkxWNGVX6ZIV9FKkVBnBS6WqZ5PJer0ed6LGol5MFotkvJGZA6hmKU+d9uEZstu7tPYNuee6ZPLn60vLfsRLqWiZMge0CQ1//vTJfM3LTKxhzTO1RIO9WeTAkvHFEo0irotWTTRZhZBULFV8xSReHmyN1aqoHENGS33+xD5B3hvkQMZXPGP1qeOOPS8I/am7+3NA1JyVqiUmrdBJx26+4mxt+eonIzJwQAmRJ1SzhI8fwXM9F070Quzi4RJF9si171zfLp5dAruEliaw1wNLGliawNIEqOOKS57k7NS5prlEEHl5XaMD+71U25wZfdoXO/PJCdok+Qck9jWmFnWD8In+RPgJOrAHRpKBVFU39xTaiSRefA+Z3hdZ6ndCvRk5lumFt9gZ3SHUGv5ZhoYDO1GU+TOfI4n+XWYeSrT7LxMYBd/FxPmky5V5mx4gl5q2DR/FCqkTxp9BONNxTyDE5IimGOYhkBkuUw8wHYCEEIS4JTFEep2CP8WDAHyIQdMRH0x2hDH+C6aGWQQhMtNvp5iUQFBQAKEPxCRVAJhKYBITk9TzkSIMIcRLWjzxNAs/giDCnR9DgDrqnJwSJPTxIu5RvAc+AV9fJlPwIog0PxLoXI9irTqy9CByISKaIaY1prRNZ6SPwdfWRC1cvKwatQdRWmTdoxJV7wukxoK0q3u2QO2VxSfznCYsx15xpT0JsKK5zggj6FqUCvqEtO8WNa2WPJVXTCm8JeE9XdFLqtjmFVLLTrahTUUpf6uFOhd5U5QSIBW52+sscjJ49nqtceMPDoLhQTg4iAbP00/KFXgCjWQoX9SyI6dZdqEpdqUBkXxb5tuzmtGbSvB9M+YT03bmrElznnFa/oHBqqVoXGDXhXS96rpQ7IedJqLOrrYSQxg2f7FaYFL5/ngazEKs1tMojAi21q09CaJ4HAZh5BE3dCPP83RhSqlOPhLMxtM4wkbsh0gyDfFoe8tZ1Mpmq95HdMN25i5q3keLfr6QZyLP+mMDwDmtVFObCQIl1dqql+UiZyZITL3F9pzeJGJzZaPDt7zebSvcuVaBZGGABywOnp4gFu2a2NXQaM16KtfQuIbC7cKNZ/05mXmGwqyJXQ0Vxq9VrbWUdFYStxPDpSlprtMmTleudPTrXt+UXF12G8XTm9ZUYi+8aYqE9TG0z5N8LZ7zyUGQzW9YXbK8jWn0ZSMaaVN0EO4ZS3mBW3vQQkK1u35HBezbjC1q1imem+nMAmZO3WG0Hr02rF7VorgoV+8wFg4UmE86LecyrXmlQw4S7AM3bBdVGZcU20g2vKeTEE1PdbtAeJSGBtOzUUtRm/ELqwquOvdyVuCsBcqEV9kUrOZpDzQ1cxwq1XR6j9vo0iiDSN5jues7or0zgA/Pb4lAoHm1pJofaeOMblm9h41h91pkreSWTuZ6boSCl4ZNQTdm+KOJxEqocHRGX5S70dlq1lUS19WDOd7wo5l+2mLTjPTDNd+wPnMRI/4BY0JL3cXkLhEUFukbHEWlyVbV5qV5+JVnGSt7ZWmJ0WN8gGWqsugBtghmQ7u/WqH1piIMPN86RrtoU9UoTbNpIX75A62E/Bm/jWyQ64/0BNyfOnamyNgGte/b9uCAxd2+3Jk/dKUeXhZ2SezSe9P9TG8O00JqjxhotpYFfLBftux3Da22LoV7/dO+Pcinu0E7OwLNuy9oZ48UNO+bgfayg2v0oCB7NEiNvkN8DaG6f2g9Pqi+VlSloihomUFpvtxcsYV+7+zGbeqaOKNEo2BNbFR3kFhuLY8jEGXLrYMp+RcY79mcHg6i1/aXLt5GPYoPaSTs79JekXbM4UWV85SrHq5c94+LUuHQw0zXP55lbhir9BD5tnxX01Lq36oszWBGup/PuoJqPNduDv2X3s9/6WP133/LfXdVmvNjiPen60+XmiHE5rvGQ0E+HIrI8UhEPjUS7Te+W7zz0Gp+B16//I/wir9JSb/ElDioDee2KvxyVA+yu+uBzq4e2OyxFIP4INzcb1UMhhhPhl/izI8l7W//z/8BUEsHCEXWf96KBgAAmBgAAFBLAQIUABQACAgIAGJc7EjWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAYlzsSEXWf96KBgAAmBgAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAAhBwAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
Aufgabe 1:
 +
 
 +
a) Die Strecke AB wird an der Geraden s gespiegelt. Ihr Spiegelbild ist die Strecke A'B'.
 +
Wie groß ist der Abstand von AB zu s und wie groß ist der Abstand von A'B' zu s (in Kästchen)
 +
 
 +
b) Über den Schieberegler kannst du den Abstand von AB zu s verändern. Wie verändert sich dabei der Abstand von A'B' zu s?
 +
 
 +
<ggb_applet width="1280" height="863"  version="4.0" ggbBase64="UEsDBBQACAgIAO5c7EgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAO5c7EgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vhbb9s2FH5uf8WBHoYNiG1Rd3dOiyZDsQBpOyDdMOyNkhibjURpIn0r+uN3SEqybDdZk16QDYhDUTw8l+9c7dmLTVnAijWSV+LUIWPXASayKudifuos1fUocV48fzqbs2rO0obCddWUVJ06gabk+amTs4Rdp6k3CpmXjYLIS0ZplrijNPWnaUyu/SQMHYCN5M9E9YaWTNY0Y1fZgpX0ssqoMoIXStXPJpP1ej3uRI2rZj6Zz9PxRuYOoJpCnjrtwzNkt3dp7Rtyz3XJ5M/Xl5b9iAupqMiYA9qEJX/+9MlszUVerWHNc7VAg71p5MCC8fkCjSKui1ZNNFmNkNQsU3zFJF4ebI3VqqwdQ0aFPn9in6DoDXIg5yues+bUcceeF4R+7O7+HKgazoRqiUkrdNKxm604W1u++smIDBxQVVWkVLOEjx/Bcz0XTvRC7OLhEkX2yLXvXN8unl0Cu4SWJrDXA0saWJrA0gSo44pLnhbs1LmmhUQQubhu0IH9XqptwYw+7Yud+eQEbZL8AxL7GlOLukH4RH8i/AQd2AMjyUCqapb3FNqJJF5yD5neF1nqd0K9KTmW6YW32BndIdQa/lmGhgM7UZT5M58jif5dZh5KtPsvExgF38XE2aTLlVmbHiAXmrYNH8VKqRPGn0I41XFPIMTkiGIM8xDIFJfYA0wHICEEIW5JApFeY/BjPAjAhwQ0HfHBZEeY4L8gNswiCJGZfhtjUgJBQQGEPhCTVAFgKoFJTExSz0eKMIQQL2nxxNMs/AiCCHd+AgHqqHMyJkjo40Xco3gPfAK+vkxi8CKIND8S6FyPEq06svQgciEimiGmNaa0TWekT8DX1kQtXFzUS7UHUVbm3aOq6t4XSI0FaVf3bIHaK4tPZgVNWYG94kp7EmBFC50RRtB1JRT0CWnfzRtaL3gmr5hSeEvCe7qil1SxzSuklp1sQ5tVQv7WVOq8KpalkABZVbi9zlVBBs9erzVu/MFBMDwIBwfR4Dn+pNwKT2ApGcqvGtmR0zy/0BS70oBIvhXF9qxh9Kau+L4Zs4lpOzO2zAqecyr+wGDVUjQusOtCul51XSjxw06TqsmvthJDGDZ/sabCpPKDcRxMQ6zWcRRGBFvr1p6EcTIOgzDyiBu6kedhusuM6twjwXQcJxH2YT9EijjEkrW95SyKrWi26l1EN2xn7bzhfbDo5wt5VhV5f2zsP6e1WjZmgEBJjTbqpZgXzMSIKbfYnbObtNpc2eDwLa932xp3rlUgnRvcAWuDpweIebumdjU0WrOeyjU0rqFwu2jjeX9Opp6hMGtqV0OF4WtVay0lnZXE7cRwaSqa67R501UrHfy61S8FV5fdRvHspjWV2AtvlmXK+hDa50m+Fs/Z5CDGZjesEaxoQxp9uayW0mboINpzlvESt/aghYRqd/2OCti3OZs3rFO8MMOZBcycusNgPXptWL1qqvJCrN5hLBwoMJt0Ws5k1vBahxyk2AZu2C6qci4pdpF8eE/nIJqe6W6B8CgNDWbnUi2qxkxfWFRw1alXsBJHLVAmvMSyZA3PeqCpGeNQqWWn97iNLo0yVOl7rHZ9Q7R3BvDh+S0RCLSoF1TzI22c0S1r9rAx7F5XeSu5pZOFHhuh5MKwKenGzH40lVgIFU7O6Auxm5ytZl0hcV09l+MNP5rqpy0Whkg/XPMN6zMXMeIfMCa01F1M7hJBYY2+wUlUmmxVbV6ah195njPRK0sFRo/xAVap2qIH2CGYDe3+ao3Wm4ow8HzrGO2iTd2gNM2mhfjlD7Su5M/4ZWSDXH+kJ+D+1LEzRcb2p33ftgcHLO725c78oSv17DK3S2qX3pvuZ3pzmBZSe8RAs7Us4IP9rmW/ami1dSnca5/27UE+3Q3a2RFo3n1BO3ukoHnfDLSXHVyjBwXZo0Fq9B3iawjV/UPr8UH1taIqq8qSihyE+W5zxeb6vbObtqlr4owSjYI1cam6g9Rya3kcgShbbh1M6b/AeM/m9HAQvba/dPE26lF8SCNhfwt7Rdoxh5d1wTOuergK3T8uhMKhh5mufzzL3DBW6yHyrXjXUCH1T1WWZjAj3c9nXUE1nms3h/7L7ue/7LH677/lvrsqzfkxxPvT9adLzRBi813joSAfDkXkeCQinxqJ9hvfLd55aDW/A69f/kd4Jd+kpF9iShzUhnNbFX45qgfy7nqgs6sHVj6oJ379WpAcRJv7rWrBEOLJ8Duc+amk/eX/+T9QSwcIGgAKsYwGAACWGAAAUEsBAhQAFAAICAgA7lzsSNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADuXOxIGgAKsYwGAACWGAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACMHAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 
 +
 
 +
Aufgabe 2:
 +
 
 +
Unten siehts du die Strecke AB und die Strecke BC. Über den Schieberegler kannst du die Strecke AB um den Punkt B drehen. Kannst du die Strecke AB so drehen, dass sie auf der Strecke BC liegt?
 +
 
 +
<ggb_applet width="1280" height="863"  version="4.0" ggbBase64="UEsDBBQACAgIAJdd7EgAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJdd7EgAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vnbbtw2EH1OvoLQQ59iryhSt3SdwDYQ1IBzQZwWRYs+UBK9y1gSVZF7cZCfaj4k39QhKWm1XtuJnTRNDK9JikMO53DOzGg9fbquSrTkrRKyPvDwvu8hXueyEPXswFvo873Ee/rk4XTG5YxnLUPnsq2YPvCokRTFgRdHKY14mu3lOCV7NC6yvcQvgr2UFiTIGCURIR5CayUe1/IFq7hqWM7P8jmv2KnMmbaK51o3jyeT1Wq136val+1sMptl+2tVeAiOWasDr+s8hu22Fq2IFQ98H09+f37qtt8TtdKszrmHjAkL8eThg+lK1IVcoZUo9BwMDtLIQ3MuZnMwCvs+WDUxYg1A0vBciyVXsHg0tFbrqvGsGKvN/APXQ+VgkIcKsRQFbw88fx/TJMVpHBI/iajpeEi2gte6E8ad0km/3XQp+Mrta3pWJfWQlrLMmNkSvX+PAj/w0SPTYNcE0ESRm/LdM5+4JnANdU3oZKhbTp0odTLUyVC4tKVQIiv5gXfOSgUgivq8hQscxkpfltyep3uwMR8/ApuUeAfCxGDqULcIPzKfCD60B3tkJB5p1e3ijkp7lThI7qAz+CJLyaA0Jbs6g/AGO6NblDrDP8vQcGQnqLK/9rOjkdxm5lWNbvxlCiP6TUycTnquTDt6IDU3sp37aF4pQxiSojA1fo9RCOSIYnDzEOEUmjhAQAeEQ0RDGOIERaaNEYlhgiKCEmTkMEGWHWECf2hsN4tQCJuZpzGQEmFQRFFIELakogiohCwxgaQBAYkwRCEsMupxYLYgEaIRjEiCKJzRcDLGIEhgIYxBfYAIRsQsxjEKIhSZ/TA1XI8Sc3TYMkCRjyJsNgRaA6UdnUE+QcRYE3VwibpZ6C2I8qrou1o2w12ANASkTdxzAWorLD6YlizjJeSKM3OTCC1ZaRhhFZ3LWqOBkO7ZrGXNXOTqjGsNqxR6y5bslGm+fgbSqtdtZXNZq1et1MeyXFS1QiiXpT+cWZZ41A+GU8OAjCboeCIcTUSjfnytXgkzaKE46Jet6sVZUZwYiU1oACRf1uXlUcvZRSPFthnTiU07U77IS1EIVv8Gzmq0GFzQJguZeNVnoYSE/UlkW5xdKnBhtP6DtxLm9mnkxwRjGqbEj2jioUs3k5JkP4SfgIaEEIphRuXMcA9Tup8kURglaZDECQFeXt4wlVCnmS+HG2JrvjF21hpmjwYn6kiWm0fW/mPW6EVrCwiIiK0x6rCeldz6iA23kJ3zi0yuz5xzELfXm8sGRr47QTazuCOIDUEI+XLWtZlrrYw52iDlWxnfSvi9t4limMdpYCVsm7nWSoH7uqN1puLeTOz3aoSyEc33Ot700co4v0n1i1ro036gRX7RmYrdgheLKuODC23vib/WntPJFR+bXvC25mXn0nCZC7lQjqEjby94LioYuokOEmau61c4gHta8FnL+4OXtjhzgNlZf+ysO4/tVs9aWZ3UyzfgC1cOMJ30p5yqvBWN8TmUQRq44BuvKoRikEWK8TrDQTA9N9kC4NEGGmDnQs9la6svCCrQGuqVvIJSC2nrXtZDB5gPbRFn8EQyewtxbUh9bn5zYTB9ratZp2RlM2em0OuMLtklb7dgsPs9l8VVcAB7awFwvHF323Du3MKdFzoNbGfZtBWkAG2F1l3Jftm171zrKlhjqWHYVlR2T69cE/iOA+kTcB39+HBFXxmuXFYVqwtU27LmjM/Mc2+TaJlvvAwxbNBz0Cx0P8Hcbt0eO+CrbrceXvYJ+EcG34S/f3/0Nxj6HYZhh+FeOOw1xFINaf4CXmaUDfi6C+2284soCm5LPJdr/q7dEuUCnKiaUuRCD2iV5jpPag3hjlu+70axC84bkz5e1m9aVivzkupkRtHxhit7ZT18+8KORZuX/M8jKPX+2rm049svbZsxx/diDA5cxrPt98Sa6Buy5six5njnArK7sSb7TlhjWWJA9DsQif9D0WYbZZvXBww//mNBhrWL3vzeNlWab0FQJWprScWsOwUJwUlI/BjHaZjAuwnLFNT5mp/lUGrUmy+G3FV1dXIcGOhM0kvSDsw0Np1zsebDSwxUAOIdVDxsi1/3y1rY3/UA/JkegO9/uazNR6S6gcgAMY6h2g/SIMRpSqET7nLbv47bN3PxtdRQOV2fwPbgmhELrstkhz+xRqqf7xIa+yX/a0nx39VR27DaF6CrqHYAdMWBRfZwB9mPH24H9QoRP9xMxG9OgJ0XrC8lQFnK1Wt+XvK1xfNzU/wNVdk2/Fdxz++WZfLvJMv84LXZZPxeZ78+6f4b8ORfUEsHCFczlSe6BgAAqhgAAFBLAQIUABQACAgIAJdd7EjWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAl13sSFczlSe6BgAAqhgAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABRBwAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Aktuelle Version vom 12. Juli 2016, 10:48 Uhr

Aufgabe 1:

a) Die Strecke AB wird an der Geraden s gespiegelt. Ihr Spiegelbild ist die Strecke A'B'. Wie groß ist der Abstand von AB zu s und wie groß ist der Abstand von A'B' zu s (in Kästchen)

b) Über den Schieberegler kannst du den Abstand von AB zu s verändern. Wie verändert sich dabei der Abstand von A'B' zu s?


Aufgabe 2:

Unten siehts du die Strecke AB und die Strecke BC. Über den Schieberegler kannst du die Strecke AB um den Punkt B drehen. Kannst du die Strecke AB so drehen, dass sie auf der Strecke BC liegt?