Lösung von Aufgabe 4.2 (WS 23 24): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „'''Satz: In einem Dreieck <math>\overline{ABC} </math> mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander. '''<br /><br /> '''a) Wel…“) |
|||
(2 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 17: | Zeile 17: | ||
+ | a) | ||
+ | Beweis 1 ist nicht korrekt, da die Voraussetzung des Basiswinkelsatzes nicht |AC| ≠|BC| ist, sondern =. Hier wurde die Kontraposition der Umkehrung verwendet. | ||
+ | Beweis 2) korrekt --[[Benutzer:Capricorn|Capricorn]] ([[Benutzer Diskussion:Capricorn|Diskussion]]) 22:03, 6. Nov. 2023 (CET) | ||
+ | |||
+ | |||
+ | b) | ||
+ | |||
+ | |||
+ | [[Datei:Vorschlag Capricorn 4.2 b.jpeg|thumb|Vorschlag Capricorn 4.2 b]]--[[Benutzer:Capricorn|Capricorn]] ([[Benutzer Diskussion:Capricorn|Diskussion]]) 22:11, 6. Nov. 2023 (CET) | ||
+ | |||
+ | richtig :) dein Beweis ist sehr übersichtlich geführt :)--[[Benutzer:Matze2000|Matze2000]] ([[Benutzer Diskussion:Matze2000|Diskussion]]) 13:06, 8. Nov. 2023 (CET) | ||
Aktuelle Version vom 8. November 2023, 13:06 Uhr
Satz: In einem Dreieck mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.
a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)
Beweis 1)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.
Beweis 2)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.
b) Beweisen Sie den Satz indirekt mit Widerspruch.
a)
Beweis 1 ist nicht korrekt, da die Voraussetzung des Basiswinkelsatzes nicht |AC| ≠|BC| ist, sondern =. Hier wurde die Kontraposition der Umkehrung verwendet.
Beweis 2) korrekt --Capricorn (Diskussion) 22:03, 6. Nov. 2023 (CET)
b)
richtig :) dein Beweis ist sehr übersichtlich geführt :)--Matze2000 (Diskussion) 13:06, 8. Nov. 2023 (CET)