Übung Aufgaben 2: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 2.4)
(Aufgabe 2.5)
Zeile 22: Zeile 22:
  
 
==Aufgabe 2.5==
 
==Aufgabe 2.5==
Begründen Sie, dass es sinnvoll ist, den Begriff ''Tangentenviereck'' zu definieren. <- sinnvoll für Mathematiker -hust-
+
Begründen Sie, dass es sinnvoll ist, den Begriff ''Tangentenviereck'' zu definieren.<br />
 
+
[[Lösung von Aufgabe 2.5]]
Ja es ist sinnvoll, da nicht jedes Viereck einen Inkreis hat, zum Beispiel hat ein überschlagendens Viereck keinen Inkreis.
+
Bei Dreiecken ist es nicht sinnvoll, da jedes Dreieck einen Inkreis sowie einen Umkreis besitzt. 25.10.2010--[[Benutzer:Hasekm|Hasekm]] 20:03, 25. Okt. 2010 (UTC)<br />
+
  
 
==Aufgabe 2.6==
 
==Aufgabe 2.6==

Version vom 26. Oktober 2010, 11:35 Uhr

Inhaltsverzeichnis

Aufgaben zu Definitionen

Aufgabe 2.1

Unter einer Konventionaldefinition versteht man eine Definition, die in der Form "Wenn-Dann" formuliert wurde.
Geben Sie zwei prinzipiell verschiedene Konventionaldefinitionen des Begriffs Mittelsenkrechte einer Strecke an.
Lösung von Aufgabe 2.1

Aufgabe 2.2

  1. Zur praktischen Motivierung der Beschäftigung mit welcher Vierecksart sind Scherenwagenheber (passende Bilder lassen sich leicht googlen) geeignet?
  2. Definieren Sie die Vierecksart, die Sie unter 1) genannt haben ohne auf einen Oberbegriff (außer Viereck) zurückzugreifen. Verwenden Sie für Ihre Definition die Eigenschaften der Diagonalen der zu definierenden Vierecksart.
  3. Definieren Sie die Vierecksart aus 1) noch zweimal unter Verwendung der unmittelbaren Oberbegriffe (Die Diagonaleigenschaften müssen jetzt keine Rolle in der Definition spielen).
  4. Aus rein geometrischer Sicht ist es für einen praktikablen Einsatz etwa zum Reifenwechsel hinreichend, Scherenwagenheber auf der Grundlage von Vierecken mit vier gleichlangen Seiten zu konstruieren. Allerdings ist die Verwendung dieser Vierecksart nicht notwendig für einen (aus rein geometrischer Sicht) funktionierenden Scherenwagenheber. Definieren Sie den Begriff des allgemeinen Wagenhebervierecks und ordnen Sie diesen in das Haus der Vierecke ein.

Lösung von Aufgabe 2.2

Aufgabe 2.3

Definieren Sie den Begriff gleichschenkliges Trapez. Beachten Sie dabei, dass ein Parallelogramm dann und nur dann ein gleichschenkliges Trapez ist, wenn es einen rechten Innenwinkel besitzt.
Lösung von Aufgabe 2.3

Aufgabe 2.4

Ein Tangentenviereck ist das was der Begriff sugeriert. Definieren Sie den Begriff Tangentenviereck
Lösung von Aufgabe 2.4

Aufgabe 2.5

Begründen Sie, dass es sinnvoll ist, den Begriff Tangentenviereck zu definieren.
Lösung von Aufgabe 2.5

Aufgabe 2.6

Geben Sie eine exakte Definition des Begriffs Winkelhalbierende an (orientieren Sie sich gegebenenfalls an Schulbuchdefinitionen). Notieren Sie, welche anderen Begriffe Sie dazu verwenden.
Lösungsvorschlag:
Gegeben sei ein Winkel ASB und ein Strahl SP*. Eine Winkelhalbierende w ist ein Strahl SP*, der im Inneren des Winkels ASB liegt
und die Winkel ASP und PSB haben dieselbe Größe.
-Strahl SP*
-Innere des Winkels--Engel82 10:47, 24. Okt. 2010 (UTC)

Lösungsvorschlag: Eine Winkelhalbierende ist eine Halbgerade die im Scheitelpunkt S des Winkels beginnt und den Winkel in zwei gleich große Winkel teilt. Begriffe: Halbgerade, Scheitelpunkt, Winkel

Gegeben ist der Winkel ABC. Eine Gerade g, die vom Punkt B ausgeht und den Winkel ABC halbiert, nennt man Winkelhalbierende.
Begriffe: Winkel, Punkt, Gerade, halbieren (?)--Lialin 22:54, 25. Okt. 2010 (UTC)

Eine Winkelhalbierende eines Winkels ist die Gerade, die durch den Scheitelpunkt des Winkels geht und diesen in zwei gleich große Teile teilt. Begriffe: Schenkel, Symmetrieachse. --Halikarnaz 02:43, 26. Okt. 2010 (UTC)

Aufgabe 2.7

Geben Sie eine Konstruktionsvorschrift für die Winkelhalbierende eines gegebenen Winkels an.
Lösungsvorschlag:
Gegeben sei ein Winkel pq, die Schenkel p,q und ein Scheitelpunkt S.
1. Konstruiere mit dem Zirkel vom Scheitelpunkt S des Winkels pq zwei Schnittpunkte mit den beiden
Schenkeln p und q.(Radius bleibt gleich).
2. Es entstehen die Punkte P und Q.
3. Konstruiere mit dem Radius SP und SQ jeweils von den Schnittpunkten P und Q einen weiteren Schnittpunkt X.
4. Zeichne einen Strahl von S durch X und du erhälst die Winkelhalbierende.Engel82 10:55, 24. Okt. 2010 (UTC)

eine vielleicht besser verständliche Formulierung zu 3.: Zeichne einen Kreis um den Punkt P mit dem Radius SP und einen Kreis mit dem Radius SQ (entspricht SP)um Q. Die Kreise schneiden sich im Scheitelpunkt S und einem weiteren Punkt X.

Vielleicht einfacher, wenn man bei sagt:

1. Konstruiere mit dem Zirkel einen Kreis k um den Scheitelpunkt S des Winkels pq. 2.Der Kreis schneidet die Schenkel p und q in den Punkten P und Q. 3. Konstruiere jeweils einen Kreis um P und Q mit dem Radius von k. 4. Die beiden Kreise haben zwei Schnittpunkte: S und X 5. Die Gerade durch die Punkte S und X nennt man Winkelhalbierende des Winkels pSq --Lialin 23:01, 25. Okt. 2010 (UTC)