Übungsaufgaben 3 EG WS2010: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Aufgabe 1) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
+ | Alle Aufgaben beziehen sich auf die ebene Geometrie. | ||
==Aufgabe 1== | ==Aufgabe 1== | ||
Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,\angle (g,h)}</math>. | Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,\angle (g,h)}</math>. | ||
==Aufgabe 2== | ==Aufgabe 2== | ||
Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> parallel sind, dann ist die Nacheinanderausführung <math>S_h \circ S_g</math> die Verschiebung <math>V_\overrightarrow{AB}</math> mit <math>|\overrightarrow{AB}|=\frac{1}{2}|g,h|</math>. | Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> parallel sind, dann ist die Nacheinanderausführung <math>S_h \circ S_g</math> die Verschiebung <math>V_\overrightarrow{AB}</math> mit <math>|\overrightarrow{AB}|=\frac{1}{2}|g,h|</math>. |
Version vom 23. November 2010, 15:46 Uhr
Alle Aufgaben beziehen sich auf die ebene Geometrie.
Aufgabe 1
Beweisen Sie: Wenn die beiden Geraden und den Punkt und nur den Punkt gemeinsam haben, dann gilt .
Aufgabe 2
Beweisen Sie: Wenn die beiden Geraden und parallel sind, dann ist die Nacheinanderausführung die Verschiebung mit .