Lösung von Aufg. 7.1: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 6: | Zeile 6: | ||
3) zu drei nkoll(A,P,B)________Axiom I/4 und 2)<br /> | 3) zu drei nkoll(A,P,B)________Axiom I/4 und 2)<br /> | ||
gibt es genau eine Ebene E<br /> | gibt es genau eine Ebene E<br /> | ||
− | 4)<math>g\supset E </math> | + | 4)<math>g\supset E </math>_________Axiom I/5<br /> |
5)Behauptung stimmt | 5)Behauptung stimmt | ||
Version vom 23. November 2010, 18:10 Uhr
Es sei eine Gerade und ein Punkt, der nicht zu gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene , die sowohl alle Punkte von als auch den Punkt enthält.
Vor: g, P ist nicht Element g
Beh: Es existiert genau eine Ebene, g,
1) _____Axiom I/1
2) nkoll(A,P,B)_______________laut Vor und 1)
3) zu drei nkoll(A,P,B)________Axiom I/4 und 2)
gibt es genau eine Ebene E
4)_________Axiom I/5
5)Behauptung stimmt