Lösung von Aufg. 13.5: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Beweisen Sie: Die Mittelsenkrechten eines Dreiecks schneiden sich in genau einem Punkt. Dieser Punkt ist der Mittelpunkt des Umkreises des Dreiecks.
 
Beweisen Sie: Die Mittelsenkrechten eines Dreiecks schneiden sich in genau einem Punkt. Dieser Punkt ist der Mittelpunkt des Umkreises des Dreiecks.
  
Vor:<math>\triangle {AMP}</math><br />
+
<u>Vor</u>:<math>\triangle {AMP}</math><br />
Beh: mab,mbc,mac schneiden sich in einem Punkt P<br />
+
<u>Beh:</u> mab,mbc,mac schneiden sich in einem Punkt P<br />
  
 
1) Für alle Punkte X der mab der Seite <math>\overline {AB}</math> gilt:____________Mittelsenkrechtenkriterium<br />
 
1) Für alle Punkte X der mab der Seite <math>\overline {AB}</math> gilt:____________Mittelsenkrechtenkriterium<br />

Version vom 25. Januar 2011, 19:02 Uhr

Beweisen Sie: Die Mittelsenkrechten eines Dreiecks schneiden sich in genau einem Punkt. Dieser Punkt ist der Mittelpunkt des Umkreises des Dreiecks.

Vor:\triangle {AMP}
Beh: mab,mbc,mac schneiden sich in einem Punkt P

1) Für alle Punkte X der mab der Seite \overline {AB} gilt:____________Mittelsenkrechtenkriterium
|{AX}|=|{BX}|

2)Für alle Punkte X der mac der Seite \overline {AC} gilt:____________Mittelsenkrechtenkriterium
|{AX}|=|{CX}|
3) Für den Schnittpunkt P der mab und mac gilt:____________________________2), 3)
|{AP}|= |{BP}|=|{CP}|
4)|{CP}|=|{BP}|_____________________Mittelsenkrechtenkriterium
P \in mbc
5) P ist der Schnittpunkt der drei Mittelsenkrechten_________________3),4)
mab, mbc,mac. --Engel82 18:00, 25. Jan. 2011 (UTC)