Diskussion:Lösung Aufgaben 11 (SoSe 11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 1: Zeile 1:
 +
Es seien α und β zwei Nebenwinkel mit| α|=|β|. Nach dem Axiom 4|4 sind α und βsupplementär, was | α|=|β| =180 bedeutet. Die Winkel α und β sind rechte Winkel und haben damit dieselbe Größe. Damit gilt | α|=|β| =180/2 = 90.
 +
 
Es seien α und β zwei Nebenwinkel mit| α|=|β|. Nach dem Axiom 4|4 sind α und βsupplementär, was | α|=|β| =180 bedeutet. Die Winkel α und β sind rechte Winkel und haben damit dieselbe Größe. Damit gilt | α|=|β| =180/2 = 90.
 
Es seien α und β zwei Nebenwinkel mit| α|=|β|. Nach dem Axiom 4|4 sind α und βsupplementär, was | α|=|β| =180 bedeutet. Die Winkel α und β sind rechte Winkel und haben damit dieselbe Größe. Damit gilt | α|=|β| =180/2 = 90.

Aktuelle Version vom 30. Juni 2011, 17:25 Uhr

Es seien α und β zwei Nebenwinkel mit| α|=|β|. Nach dem Axiom 4|4 sind α und βsupplementär, was | α|=|β| =180 bedeutet. Die Winkel α und β sind rechte Winkel und haben damit dieselbe Größe. Damit gilt | α|=|β| =180/2 = 90.

Es seien α und β zwei Nebenwinkel mit| α|=|β|. Nach dem Axiom 4|4 sind α und βsupplementär, was | α|=|β| =180 bedeutet. Die Winkel α und β sind rechte Winkel und haben damit dieselbe Größe. Damit gilt | α|=|β| =180/2 = 90.