Probeklausur (SoSe 11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(1. b)
 
(48 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
{{pdf|Probeklausur_SS_11.pdf‎}}
+
==Bemerkungen vorab==
 +
Die Probeklausuren sind geschrieben. Das Bild, das sich dabei bei einigen Kommilitonen bot, ist erschreckend. Wer nach der Intensität, mit der wir auf den Begriffen ''Strecke'' oder ''Inneres eines Winkels'' herumgeritten sind, nicht ad hoc auch ohne explizite Vorbereitung eine entsprechende Definition anbieten kann, hat definitiv nicht verstanden, wie und in welcher Form Mathematik gelernt werden muss.--[[Benutzer:*m.g.*|*m.g.*]] 18:47, 26. Jun. 2011 (CEST)
 +
==Die Klausur als PDF==
 +
{{pdf|Probeklausur_SS_11.pdf‎|Probeklausur_SS_11}}
 +
==Die Klausuraufgaben zum Diskutieren==
 +
===Aufgabe 1===
 +
====1. a====
 +
Definieren Sie den Begriff offene Strecke <math>\overline{AB}</math>
 +
 
 +
 
 +
[[Lösung_Aufgabe_1a_SS11]]
 +
 
 +
====1. b====
 +
Definieren Sie, was man unter dem ''Kreis <math>k</math> mit dem Radius <math>r</math> und dem Mittelpunkt
 +
<math>M</math>'' versteht.
 +
 
 +
[[Lösung_Aufgabe_1b_SS11]]
 +
 
 +
====1. c====
 +
Definieren Sie den Begriff ''Inneres eines Kreises''.
 +
 
 +
[[Lösung_Aufgabe_1c_SS11]]
 +
 
 +
====1. d====
 +
Was ist an der folgenden Definition nicht korrekt?<br />
 +
Definition (''gleichschenkliges Dreieck''):<br />
 +
::Wenn ein Dreieck zueinander kongruente Basiswinkel hat, so ist es ''gleichschenklig''.
 +
 
 +
 
 +
[[Lösung_Aufgabe_1c_SS11]]
 +
 
 +
====1. e====
 +
Unter dem Raum <math>\mathbb{P}</math>versteht man die Menge aller Punkte. Die Punktmenge
 +
<math>\varepsilon \subset \mathbb{P}</math> sei eine Ebene. Gegeben sei ferner <math>\ Q</math> mit <math>Q \in \mathbb{P} \land Q \not \in \varepsilon</math>. Definieren Sie die Begriffe Halbraum <math>\varepsilon Q^+</math> und <math>\varepsilon Q^-</math>.
 +
 
 +
[[Lösung_Aufgabe_1e_SS11]]
 +
 
 +
====1. f====
 +
Definieren Sie den Begriff regelmäßiges Sechseck. Der Begriff n-Eck sei bereits
 +
definiert.
 +
 
 +
 
 +
[[Lösung_Aufgabe_1f_SS11]]
 +
 
 +
===Aufgabe 2===
 +
====2. a====
 +
Es sei <math>gQ^+ \subset \varepsilon</math> eine offene Halbebene der Ebene <math>\varepsilon</math>. Es gelte<math> P \in gQ^+</math> . Man beweise:<math> A \in gQ^+ \Rightarrow A \in gP^+</math>. (Skizzen helfen)
 +
 
 +
[[Lösung_Aufgabe_2a_SS11]]
 +
[[Kategorie:Einführung_Geometrie]]
 +
 
 +
====2. b====
 +
Formulieren Sie die Kontraposition der Implikation aus Teilaufgabe a).
 +
 
 +
[[Lösung_Aufgabe_2b_SS11]]
 +
 
 +
====2. c====
 +
Warum bedarf die Implikation aus Teilaufgabe b) keines Beweises mehr?
 +
 
 +
[[Lösung_Aufgabe_2c_SS11]]
 +
 
 +
====2. d====
 +
Wir wissen bereits, dass Halbebenen konvexe Punktmengen sind. Begründen Sie, dass das Innere eines Winkels immer eine konvexe Punktmenge ist. Sie dürfen in Ihrer Begründung auf Sätze aus der Vorlesung verweisen, ohne diese noch einmal beweisen zu müssen. (Tabu ist diesbezüglich natürlich der Satz ''Das Innere eines Winkels ist konvex''.)
 +
 
 +
[[Lösung_Aufgabe_2d_SS11]]
 +
 
 +
====2. e====
 +
Beweisen Sie: Jede Strecke <math>\overline{AB}</math> hat höchstens einen Mittelpunkt.
 +
 
 +
[[Lösung_Aufgabe_2e_SS11]]
 +
 
 +
==Die Probeklausur vom letzten Semester==
 +
===als PDF===
 +
{{pdf|Probeklausur_SoSe_11_(1).pdf‎ |alte Probeklausur}}
 +
 
 +
== Aufgabe 1 ==
 +
a) Definieren Sie den Begriff: "Konkave Punktmenge" ohne den Begriff "konvex" zu gebrauchen.<br />
 +
 
 +
b) Begründen Sie, dass der Schnitt einer offenen Halbebene ''E'' mit einer Halbgeraden, die zwei Punkte mit ''E'' gemeinsam hat, auf jeden Fall eine konvexe Punktmenge ist.<br />
 +
 
 +
c) Zeigen Sie an einem Beispiel, dass die Vereinigungsmenge des Inneren zweier Drachenvierecke, die keine Rauten sind, konkav sein kann.<br />
 +
 
 +
[[Lösung von Aufg. 1_SS11]]
 +
 
 +
== Aufgabe 2 ==
 +
Es seien A und B zwei verschiedene Punkte. Welche Ergebnisse erzielen Sie nach den folgenden Mengenoperationen?
 +
 
 +
a) <math>\ AB^{+} \cap BA^{+} =</math> <br\>
 +
 
 +
b) <math>\ AB^{-} \cap BA^{-} =</math> <br\>
 +
 +
c) <math>\ AB \mathrm{~geschnitten~mit~dem~Kreis~um} \ A \mathrm{~durch} \ B =</math>
 +
 
 +
d)<math>\ AB \cap BA =</math> <br\>
 +
 
 +
[[Lösung von Aufg. 2_SS11]]
 +
 
 +
== Aufgabe 3 ==
 +
Wir gehen von folgender Implikation aus: Wenn ein Punkt ''P'' zur Mittelsenkrechten der Strecke gehört, dann hat er zu den Punkten ''A'' und ''B'' ein und denselben Abstand.<br />
 +
a) Formulieren  Sie die Kontraposition dieser Implikation.<br />
 +
b) Formulieren Sie die Umkehrung dieser Implikation.<br />
 +
 
 +
[[Lösung von Aufg. 3_SS11]]
 +
 
 +
==Aufgabe 4==
 +
Definieren Sie den Begriff Strahl <math>\ AB^{+}</math>. Verwenden Sie dabei den Begriff Strecke.<br />
 +
 
 +
[[Lösung von Aufg. 4_SS11]]
 +
 
 +
==Aufgabe 5==
 +
Definition (gemeiner Dreiecksschneider): Unter einem gemeinen Dreieckschneider versteht man eine Gerade, die alle drei offenen Seiten eines Dreiecks schneidet.<br />
 +
 
 +
Beschreiben Sie die Menge aller gemeinen Dreiecksschneider und begründen Sie Ihre Aussage.<br />
 +
 
 +
[[Lösung von Aufg. 5_SS11]]
 +
 
 +
==Aufgabe 6==
 +
Es seien ''A'', ''B'' und ''C'' drei paarweise verschiedene Punkte. Beweisen Sie: <br /><br />
 +
<math>\ Zw(A,B,C)\Rightarrow \neg Zw(B,A,C)</math> <br\>
 +
 
 +
[[Lösung von Aufg. 6_SS11]]
 +
 
 +
==Aufgabe 7==
 +
Gegeben seien drei paarweise verschiedene und '''kollineare''' Punkte ''A'', ''B'' und ''C'' in einer Ebene ''E''. Ferner sei eine Gerade ''g'' Teilmenge der Ebene ''E'', wobei keiner der Punkte ''A'', ''B'' und ''C'' auf ''g'' liegen möge. Beweisen Sie folgenden Zusammenhang:<br /><br />
 +
<math>\overline{AB} \cap g \neq \lbrace \rbrace \wedge \overline{BC} \cap g = \lbrace \rbrace \Rightarrow \overline{AC} \cap g \neq \lbrace \rbrace  </math> <br />
 +
 
 +
[[Lösung von Aufg. 7_SS11]]
 +
 
 +
[[Category:Einführung_Geometrie]]

Aktuelle Version vom 17. Juli 2011, 12:50 Uhr

Inhaltsverzeichnis

Bemerkungen vorab

Die Probeklausuren sind geschrieben. Das Bild, das sich dabei bei einigen Kommilitonen bot, ist erschreckend. Wer nach der Intensität, mit der wir auf den Begriffen Strecke oder Inneres eines Winkels herumgeritten sind, nicht ad hoc auch ohne explizite Vorbereitung eine entsprechende Definition anbieten kann, hat definitiv nicht verstanden, wie und in welcher Form Mathematik gelernt werden muss.--*m.g.* 18:47, 26. Jun. 2011 (CEST)

Die Klausur als PDF

Probeklausur_SS_11

Die Klausuraufgaben zum Diskutieren

Aufgabe 1

1. a

Definieren Sie den Begriff offene Strecke \overline{AB}


Lösung_Aufgabe_1a_SS11

1. b

Definieren Sie, was man unter dem Kreis k mit dem Radius r und dem Mittelpunkt M versteht.

Lösung_Aufgabe_1b_SS11

1. c

Definieren Sie den Begriff Inneres eines Kreises.

Lösung_Aufgabe_1c_SS11

1. d

Was ist an der folgenden Definition nicht korrekt?
Definition (gleichschenkliges Dreieck):

Wenn ein Dreieck zueinander kongruente Basiswinkel hat, so ist es gleichschenklig.


Lösung_Aufgabe_1c_SS11

1. e

Unter dem Raum \mathbb{P}versteht man die Menge aller Punkte. Die Punktmenge \varepsilon \subset \mathbb{P} sei eine Ebene. Gegeben sei ferner \ Q mit Q \in \mathbb{P} \land Q \not \in \varepsilon. Definieren Sie die Begriffe Halbraum \varepsilon Q^+ und \varepsilon Q^-.

Lösung_Aufgabe_1e_SS11

1. f

Definieren Sie den Begriff regelmäßiges Sechseck. Der Begriff n-Eck sei bereits definiert.


Lösung_Aufgabe_1f_SS11

Aufgabe 2

2. a

Es sei gQ^+ \subset \varepsilon eine offene Halbebene der Ebene \varepsilon. Es gelte P \in gQ^+ . Man beweise: A \in gQ^+ \Rightarrow A \in gP^+. (Skizzen helfen)

Lösung_Aufgabe_2a_SS11

2. b

Formulieren Sie die Kontraposition der Implikation aus Teilaufgabe a).

Lösung_Aufgabe_2b_SS11

2. c

Warum bedarf die Implikation aus Teilaufgabe b) keines Beweises mehr?

Lösung_Aufgabe_2c_SS11

2. d

Wir wissen bereits, dass Halbebenen konvexe Punktmengen sind. Begründen Sie, dass das Innere eines Winkels immer eine konvexe Punktmenge ist. Sie dürfen in Ihrer Begründung auf Sätze aus der Vorlesung verweisen, ohne diese noch einmal beweisen zu müssen. (Tabu ist diesbezüglich natürlich der Satz Das Innere eines Winkels ist konvex.)

Lösung_Aufgabe_2d_SS11

2. e

Beweisen Sie: Jede Strecke \overline{AB} hat höchstens einen Mittelpunkt.

Lösung_Aufgabe_2e_SS11

Die Probeklausur vom letzten Semester

als PDF

alte Probeklausur

Aufgabe 1

a) Definieren Sie den Begriff: "Konkave Punktmenge" ohne den Begriff "konvex" zu gebrauchen.

b) Begründen Sie, dass der Schnitt einer offenen Halbebene E mit einer Halbgeraden, die zwei Punkte mit E gemeinsam hat, auf jeden Fall eine konvexe Punktmenge ist.

c) Zeigen Sie an einem Beispiel, dass die Vereinigungsmenge des Inneren zweier Drachenvierecke, die keine Rauten sind, konkav sein kann.

Lösung von Aufg. 1_SS11

Aufgabe 2

Es seien A und B zwei verschiedene Punkte. Welche Ergebnisse erzielen Sie nach den folgenden Mengenoperationen?

a) \ AB^{+} \cap BA^{+} =

b) \ AB^{-} \cap BA^{-} =

c) \ AB \mathrm{~geschnitten~mit~dem~Kreis~um} \ A \mathrm{~durch} \ B =

d)\ AB \cap BA =

Lösung von Aufg. 2_SS11

Aufgabe 3

Wir gehen von folgender Implikation aus: Wenn ein Punkt P zur Mittelsenkrechten der Strecke gehört, dann hat er zu den Punkten A und B ein und denselben Abstand.
a) Formulieren Sie die Kontraposition dieser Implikation.
b) Formulieren Sie die Umkehrung dieser Implikation.

Lösung von Aufg. 3_SS11

Aufgabe 4

Definieren Sie den Begriff Strahl \ AB^{+}. Verwenden Sie dabei den Begriff Strecke.

Lösung von Aufg. 4_SS11

Aufgabe 5

Definition (gemeiner Dreiecksschneider): Unter einem gemeinen Dreieckschneider versteht man eine Gerade, die alle drei offenen Seiten eines Dreiecks schneidet.

Beschreiben Sie die Menge aller gemeinen Dreiecksschneider und begründen Sie Ihre Aussage.

Lösung von Aufg. 5_SS11

Aufgabe 6

Es seien A, B und C drei paarweise verschiedene Punkte. Beweisen Sie:

\ Zw(A,B,C)\Rightarrow \neg Zw(B,A,C)

Lösung von Aufg. 6_SS11

Aufgabe 7

Gegeben seien drei paarweise verschiedene und kollineare Punkte A, B und C in einer Ebene E. Ferner sei eine Gerade g Teilmenge der Ebene E, wobei keiner der Punkte A, B und C auf g liegen möge. Beweisen Sie folgenden Zusammenhang:

\overline{AB} \cap g \neq \lbrace \rbrace \wedge \overline{BC} \cap g = \lbrace \rbrace \Rightarrow \overline{AC} \cap g \neq \lbrace \rbrace

Lösung von Aufg. 7_SS11