Auftrag der Woche 4: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.<br /><br /> | Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.<br /><br /> | ||
− | <ggb_applet width="720" height="500" version="3.2" ggbBase64=" | + | <ggb_applet width="720" height="500" version="3.2" ggbBase64="UEsDBBQACAAIAExgpzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Z1bd6LIFsefz3wKlg/nTZoqrq6TzKwk5tLTas9M+rJWXs5CJcqJYkaxu5NPf6ooQDaoRISe2vaDaRRL+P3rsnftqs3Zbz/mM+Wbt1z5i+C8RVStpXjBaDH2g8l5ax0+tp3Wb7/+cjbxFhNvuHSVx8Vy7obnLV2lLf7+2v/1l3+draaL74o7i0754nvfz1uP7mzltZTV89Jzx6up54XgfXf9w5/57vLl4/B/3ihcbT4QhbwPntfsV8Llmr03mo97/io5fBf94PPMD7v+N3/sLZXZYnTeoia7dPa/L94y9Efu7LxlaOIdWvyQvaXzT6eLpf+6CEJ++qbwR/aOoqz8V48Rofy9s3fRjZ5569HMH/tuwG8mug52kqJ898fhlJ2rUYOV6fmTKbtYS6OiuNFisRzfv6xCb678ePCWC3ZpEegXcWDaFj9asetiP2hq0UfZo6gU79u9F4ZMlpXi/vBWCZvJ0h9n//9+dbmYjVOczws/CK/c53C9jBTV47fuwxdePPulJb/ai2Ay8+L3CAM+9UZPw8WPe4FAF0V/enmOvhJdznBytZgtlsqSwzXZCfHfofgbncOvMz1Li87RojPiMnih6eekQ6Mzor9D8Tc6a+YH4tLi+ybJTRMt+Rl/pfA3OERWERMcM3foMV1byjrww15ywPR/2twpP3+wng9ZA8jWgLRIUlORZ+9yVefsyVsG3kzUj4Dpul6sV8o3XhGFdNF1jL2RP2eH4oMYiMvF+swuQLw79iZLL7lu0XoEruhTLVsHc2+fvUsugl/Dil3rKGTdALufkN8Lb6UhayHnrfvRNPCXo2lLGbsh/4Q3hZk391g7CaNaEVWqlM9FK+0UFlH7zvHL3CH7fGsViSqTO3ueuuydpA3M3BfW3LP3FRXYX4zh3boBoxbdCmt0z7wArsuz543jLi6Mq7LyzIqMGkbmkiJWK+XHeaujOqwpsotRLdawX8WXo3NEI+KNP/pdPdZYMCmhc3kidIgW49FrxXN1KnhII3i6p4KHNtK4rk8ND6kVz82p4Ekal1YrnttTwaM1gufuRPB0Kret0WI+d4OxErhz9kN/LGYvk0UQUfG5x6K4Grd+FJfwYV5xKR/OFFfn3bbiGrx7UlyTN0PFtXh1U1ybYxXI1mFSBLMRZ8wEJ6IkV5Q0FCWNREljUZInSnoUJU3YH+e8NRWXHV/sFlHFZSeypb8Gze1wyuzawFutuOWZon23vwpsbOhsDTAJ8BD4YVoHyCF1YHdNXXkTfpReiFvH3eyo0Ptu58AqvamUbeETxjWZVUpbJVbeBdpzF97fgThnJVwRf8585JEfppVrxlvE+yBkjokXGfpFf+PJ8565m/cx+LR0gxV39sU5GT/mjfyH2PhrOfxtbrdp2X+I1RhhUyPfGNrEVA0gB8GrxhihGvAfja2LRBxuraKVw8Mmh6Z2cv8iOdqbxkJQjx2P+ATRoALM7taBQDZeNSbY1GiXtQ/WPAwDryBTdIKUjB/MHwOfItIGOsjviw5yHIhB5iFrqplIZB3jIXf9mRt62x1koprCsX1f8H8v/u0+L1b/+S8pc2RB1CH90j87S5Exm4yCzRpPCNcP9bIU6mUVqJfyQTXVDoCqR1BNbvHUDfWqFOpVFahX8kG1+YjYGMduKcduFY5d+Tg6rHI218ivSzleV+F4LTFH2kR9vCnleFOF4418HNN2zQZyM28T10z1tpTqbRWqt/JR3T4E/QTEd6WI76ogvpMP8XbT6djeYEfEJr19EbnJHNLsaC0iOZlDI9t3ishO5tDK1l0R6cmKszXiA6/EFYdx/Cc94FGg9IDHgtIDHhFKD3hcKD3g0aH0gMeI4oOSWrI9UgSqSyMRo91Vqql4UcyjOde6gVbSjjqCaJrcBB40cUQrsVh7yfRHDuJpqCFGgTZBJQMMDA4VE7W2aoN5QhOvPiOM+mTaTxz009UOXg3GmDVIo0nUUQ2CdD6wEFtCqsi26dp22kqoqRL7NGKxjxgFysSbto4rmtpxwNuIW9AEo0DtPU1om6FGDbUD3kccvZ1iFQyMQpSoloVmEHp71KWtlYdd6CFzB5svSaOloZK4uWmqQWF7M5uKvOwDe1kF7KWMYK0UbAeCpU0FX/ZxvarC9Uo+rmamwjbOtVvOtVuFa1dGrtZP7Aiuy8FeVwF7LTFYVogN57wbi9bs43pTheuNjFxJwtWEXJ2mwjX7sN5WwXorH1ZjU10bx3pXjvWuCtY7GbGSRnqB/VEaCqM0FEZpKIzSUBiloTBKQ2GUhsIoDS0Il4t/UBClSeJFQxgvGsF40RjGizwYL3qE8aJJ5nATsymP7e2N2tAGPTNi6lE94+sGo43+PytuU08s6vC7OmIKx0wsk8QScRDP/g/RyqBBGbilaOb7MrSyjJDK0i40j7auaoWMIHiEGCMWAk5kklywRnVArEZD3Il5eEWCYYB4w0PadphIxql0aY9IRUpGmsxAQ+Gcv9xTzG+K0iBUZW/LoapGTqXhTNFKtHcEYhKBOA2mAQh6+L+fyu4hS7Vpsgi+qd1Dm/mV3wtu+sXb1jZuiWJJM7diqkTkKDFUrf45qkLIqsjw8nCGl5IxNFQrycBl1s+wEJ4qMrw6nOGVdAxJgwwLoagiw+7hDLuSMWS9IJwdtZtr2YUYVJHo9eFEr7EQbaCOFqJPRaI3hxO9kYxo2s7NJmplIdRUZHh7OMNb6RhaDTIsxJWKDO8OZ3gnGcOM3XNcW94bQwIRJBA/AtEjEDsCkSMQNwJRo4IoMPoCI0YURowojBhRGDGiMGJEYcSIwogRhRGj0kjjvoiRfLt8Pj4+rrwwmvqi8azK7up1eCypyQhZI6uB83Pl7D/QZ8a/7wefKFo+vmd34CwGWklGOCUpBpV01YF2JF5Nxsg1SabziOrAzFmINfHQa7KJicNpch2vKI84RSmEj6hqgg3yFPEYP8GqSa6dGKcznkyxS5KuTzARqQCd8w8nkm9dj/uuTjrGv9Gl3wendyJwrCbg9E8EjhnDseuEMzgROHpVOG+ZKfsgZqp6YoaqL2amBrtmt+KV0E/i7Jk4ey7mr4JKc0+1jDuS5JZ5wjaGanHILxlD7bQwBGNonv4MF32azyXNV77ipT/HRT+dtqNJp2pgph/got9OKn9ivluY4EMr4+OprOaKFt5zUSxVr3838od8WPNjwcb4UCWl4eZLslRuxlHPb+2OAp0NbELslVPtVaHak44qUc2fRrVfTrVfhWpfOqp0e101m6A6KKc6qEJ1IB3VHT3AsVR3OHAwlWgvc0izVU44dmWJSSks7Sm7dGKWXToxzy6dCI5IMkqBfI04gumTqzXjZ21XfapvScWOervvpo43i5MUcLZqZBPA8XQaaOy0goOIU5P0gYGZMF0HboVANPNd8BtxilJ4imDUuaNVIcCpAsm5kdHmYRCYQ7TVDlo1f5yKW0ls1bRilYzG/Eqixmss/9jpVh6UheUDCIvKYFSyrzrg8Vnxk5uIptoNPDqjV8q1V4VrTzquumo5TpMk+6Uk+1VI9qUjSVUD1FCxf9NR9QagDkqhDqpAHUgHdVezPxrrfm+SQm+SQm+SQm9yZwIlCkt7gr7pDPqmc5hAKTgqCRIFQjbjVXJLJpX75/mUjW7s3n1TNYQZC/l2hM3mqKZtm6ewmGqGUyGqwqW4jpVMAsCkCB09UsxQNZAGDnGuhDlOwTLRS/joev5TfEjoqB3TyXyEeNYmwClRe0ejSlxVTaWEZFLVEkwaQaPpz1NxVZ24WTnHLbTq+8vlYrndT/1zp3uqV3FPdWnsVFLTKrWt8Hq74PWqwOvJB09rEF5/F7x+FXh9+eAls4AHr6x9A7zBLniDKvAG8sGrvGb7EG9Sh96kDr1JHXqTepk3qUNvkkJvkkJvkkJvstoGaQp0Oy1vssmNH02avsmqVZrWWAyW0y6PEZkK6QK+JP5FcC9exalC0haSNaxt4mBWIcCpQn4ta5siXs3616n4cpZqOPFqVpi3WDvqgTA9pmjOyPlTmCN/FcwWf7+twStHitWvWOcPFqemuLsDJwbNdNVQPo1qEpaHkyE1NY9qPri/ywev4IHLY8jzZ3PoxE5fknR+ukEMK30xmvLNi1B7h0PtSQa1owJ4lhn3KNRyaGfz0pTLXmTaP5xpXzKmtgrhmfE6bsfULTN9qb+eDnYxHRzOdCAZU0cllHTM9MWKzcKORg09fTlq8c1eBx+498C5B659iWMP3XoduvU6dOt16NaXzsLsc+tlXHicyXxGxDqKtr27Lhzu9dcyk/FTV8Gy2gy6XcNKcjxlug3+IroOnYB+Rj+Bhcv4RCO58dOwEzsRmCpWYidSNXu2btknEFpGKFpmJGEvyaPfMiMJeyGxH9Umdm7wwStZgFWydkGdjhFPzxW0FO1M69imtXmRWbO3OHZw11LRxrs/xLq7l8aus1TmsRX8j2idZcaEdhpw6sqAfjoE6CeJgBp2tqGQZBKbGo7taPGLZdfv0ZUB/XwI0M/SALVVXc92JVYM1NazY4JzlOux3Z0rA/rlEKBfJAJKaNZrS5o8M5TS+mnb8Uq8Wn25e0Hyk/C7Pgt/68suny0Owq7E2aE4ey28sm+VvLEGg6v8MUWTWKKhOKyQgdqIjdc6/LBVgybGvrs9xpS3wFSiHZuFenYyh8bJ3Nsd1SFZ0x9x0soQm1TMGrThXLARa+UAV9lw4uTIVidzrk0QJ31dI9QKWuLxk7b5UwOzTpWpmXq8Ids0ssY7YnfrGzaxCprEz6MpiMi3Ponh2XaywzaiOShoH309kVSKUZaveK/fgevd9uF5OBU8ViN4Lv7x3Cy1158jl4hvt8C/Cpv6QdjUF7uztBjiRDfZSfddmN+vlexuA4vdXYvh7Ta6kaShYSe3zItuCkMwkuQV+I6Nf5qpc7POjmIW4BWbAIV0kRTVOsfc01O3DYY419iR9AHAdvrwo0rD4dYt/l/z+eIutwyIX6tkjNt8SZZZP75wN1muSOtH+fAWlA9VUD7Ih9JuFOVFMuO8H+bVYRivZAKY1kX7SIA7rFw4c/+QOaQpuK1WL/ziKLV+s0uNXo9IRWiAyiztiqA4It+mddjDo2Y3VjecpFCLs0dTRDMrBXsYZ+61NC1hugVIUx2QfA1xPrxXnJoU8uGJvlxiGd5uB77FDKxgBMoz7JqqbsVzS3ZjJuBbLMAK9p88FK1GKabW316O3cOMv65Mxl9aC+0j+e01/oDpJ0B2Sw0/8aVxzuxL0oe9HpUvzGh8KXjF/d0Zsy8ebmsx+8bY8ukUEu5G7Vvike1NRh82FUje9G7bqpXdX0kQJdzdYfRh06Sdt/qiPhyNJqynDlbsg6gsfjzxFhNvuHR//T9QSwcIX1NQjq0PAAC13AAAUEsBAhQAFAAIAAgATGCnPF9TUI6tDwAAtdwAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAADnDwAAAAA=" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> |
Aktuelle Version vom 7. Mai 2010, 11:14 Uhr
Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.