Serie 03: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.2) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.2) |
||
| Zeile 3: | Zeile 3: | ||
Es sei <math>k</math> ein Kreis mit dem Mittelpunkt <math>M</math> und dem Radius <math>r</math>. Ferner sei <math>g</math> eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei <math>Z</math> der gemeinsame Schnittpunkt der Senkrechten in <math>M</math> auf <math>g</math> mit <math>k</math>. Wir definieren eine Abbildung <math>\varphi</math> von <math>k\setminus_Z</math> auf <math>g</math>: <math>\forall P \in k\setminus_Z: \varphi(P)=ZP \cap g</math>. Ist <math>\varphi</math> fixpunktfrei? | Es sei <math>k</math> ein Kreis mit dem Mittelpunkt <math>M</math> und dem Radius <math>r</math>. Ferner sei <math>g</math> eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei <math>Z</math> der gemeinsame Schnittpunkt der Senkrechten in <math>M</math> auf <math>g</math> mit <math>k</math>. Wir definieren eine Abbildung <math>\varphi</math> von <math>k\setminus_Z</math> auf <math>g</math>: <math>\forall P \in k\setminus_Z: \varphi(P)=ZP \cap g</math>. Ist <math>\varphi</math> fixpunktfrei? | ||
==Aufgabe 3.2== | ==Aufgabe 3.2== | ||
| − | Es sei <math>X=\left\{ (x,0)|x\in \mathbb{R} \right\}</math>. Wir definieren auf <math>X</math> die folgende Abbildung <math>\varphi</math>: <math>\forall (x,0) \in X: \varphi((x,0))=(x, \sin^2x)</math>. Jedes Element des <math>\mathbb{R}^2</math> fassen wir als Punkt auf. Hat <math>\varphi</math> Fixpunkte? Wenn ja welche? | + | Es sei <math>X=\left\{ (x,0)|x\in \mathbb{R} \right\}</math>. Wir definieren auf <math>X</math> die folgende Abbildung <math>\varphi</math>: <math>\forall (x,0) \in X: \varphi((x,0))=(x, \sin^2x)</math>. Jedes Element des <math>\mathbb{R}^2</math> fassen wir als Punkt auf. Hat <math>\varphi</math> Fixpunkte? Wenn ja welche? (Geogebra hilft) |
| + | ==Aufgabe 3.3== | ||
| + | Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel <math>P </math>hat bezüglich eines bildschirmeigenen Koordinatensystems Koordinaten <math>\left(x_P, y_P\right)</math> | ||
==Aufgabe 3.1== | ==Aufgabe 3.1== | ||
Version vom 8. November 2011, 13:10 Uhr
Inhaltsverzeichnis |
Aufgabe 3.1
(alles in ein und derselben Ebene)
Es sei
ein Kreis mit dem Mittelpunkt
und dem Radius
. Ferner sei
eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei
der gemeinsame Schnittpunkt der Senkrechten in
auf
mit
. Wir definieren eine Abbildung
von
auf
:
. Ist
fixpunktfrei?
Aufgabe 3.2
Es sei
. Wir definieren auf
die folgende Abbildung
:
. Jedes Element des
fassen wir als Punkt auf. Hat
Fixpunkte? Wenn ja welche? (Geogebra hilft)
Aufgabe 3.3
Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel
hat bezüglich eines bildschirmeigenen Koordinatensystems Koordinaten
Aufgabe 3.1
Beweisen Sie: wenn eine Bewegung
zwei verschiedene Fixpunkte
und
hat, dann hat ist die Gerade
eine Fixpunktgerade bezüglich
.
Aufgabe 3.2
Beweisen Sie: Wenn drei nicht kollineare Punkte
Fixpunkte der Bewegung
sind, so ist
die identische Abbildung.
==

