Serie 03: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.1) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.2) |
||
Zeile 10: | Zeile 10: | ||
Beweisen Sie: wenn eine Bewegung <math>\varphi</math> zwei verschiedene Fixpunkte <math>A</math> und <math>B</math> hat, dann hat ist die Gerade <math>AB</math> eine Fixpunktgerade bezüglich <math>\varphi</math>. | Beweisen Sie: wenn eine Bewegung <math>\varphi</math> zwei verschiedene Fixpunkte <math>A</math> und <math>B</math> hat, dann hat ist die Gerade <math>AB</math> eine Fixpunktgerade bezüglich <math>\varphi</math>. | ||
− | ==Aufgabe 3. | + | ==Aufgabe 3.5== |
Beweisen Sie: Wenn drei nicht kollineare Punkte <math>A,B,C</math> Fixpunkte der Bewegung <math>\varphi</math> sind, so ist <math>\varphi</math> die identische Abbildung. | Beweisen Sie: Wenn drei nicht kollineare Punkte <math>A,B,C</math> Fixpunkte der Bewegung <math>\varphi</math> sind, so ist <math>\varphi</math> die identische Abbildung. | ||
− | + | ||
+ | |||
[[Kategorie:Elementargeometrie]] | [[Kategorie:Elementargeometrie]] |
Version vom 8. November 2011, 13:18 Uhr
Inhaltsverzeichnis |
Aufgabe 3.1
(alles in ein und derselben Ebene) Es sei ein Kreis mit dem Mittelpunkt und dem Radius . Ferner sei eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei der gemeinsame Schnittpunkt der Senkrechten in auf mit . Wir definieren eine Abbildung von auf : . Ist fixpunktfrei?
Aufgabe 3.2
Es sei . Wir definieren auf die folgende Abbildung : . Jedes Element des fassen wir als Punkt auf. Hat Fixpunkte? Wenn ja welche? (Geogebra hilft)
Aufgabe 3.3
Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel hat bezüglich eines bildschirmeigenen Koordinatensystems die Koordinaten . Wir definieren auf den Pixeln unseres Bildschirms die folgende Abbildung : . Wie groß ist die Wahrscheinlichkeit, dass einen Fixpunkt hat?
Aufgabe 3.4
Beweisen Sie: wenn eine Bewegung zwei verschiedene Fixpunkte und hat, dann hat ist die Gerade eine Fixpunktgerade bezüglich .
Aufgabe 3.5
Beweisen Sie: Wenn drei nicht kollineare Punkte Fixpunkte der Bewegung sind, so ist die identische Abbildung.