Verschiebungen (2011/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Beweis (Parallelität bei Geradenspiegelungen))
(Fall 1 g \cap a = \{S\})
Zeile 22: Zeile 22:
  
 
::zu zeigen: <math>S_b \left( S_a \left(g\right) \right)=g' || g</math>
 
::zu zeigen: <math>S_b \left( S_a \left(g\right) \right)=g' || g</math>
=====Fall 1 <math>g \cap a = \{S\}</math>=====
+
:: =====Fall 1 <math>g \cap a = \{S\}</math>=====
  
 
=== Verschiebungsweite===
 
=== Verschiebungsweite===

Version vom 7. Dezember 2011, 17:12 Uhr

Inhaltsverzeichnis

Definition: (Verschiebung als NAF zweier Geradenspiegelungen)

Die NAF zweier Geradenspiegelungen S_b \circ S_a mit a || b heißt Verschiebung.

Eigenschaften von Verschiebungen

Die identische Abbildung als Verschiebung

Satz: (\operatorname{id} als Verschiebung)

Es sei V=S_b \circ S_a eine Verschiebung.
Wenn a||b dann V=\operatorname{id}.

Beweis (\operatorname{id} als Verschiebung)

Folgt unmittelbar daraus, dass jede Geradenspiegelung selbstinvers ist.



Bringen Sie die beiden Spiegelgeraden miteinander zur Deckung.

Parallelität

Satz: (Parallelität bei Geradenspiegelungen)

Es sei V=S_b \circ S_a eine Verschiebung. Für jede Gerade g und ihr Bild g' bei V gilt: g||g'.

Beweis (Parallelität bei Geradenspiegelungen)

Es sei V=S_ \circ S_a eine Verschiebung (a||b. Ferner sei g eine beliebige Gerade.
zu zeigen: S_b \left( S_a \left(g\right) \right)=g' || g
=====Fall 1 g \cap a = \{S\}=====

Verschiebungsweite

Satz: (über die Verschiebungsweite)

Es sei V=S_b \circ S_a eine Verschiebung V. Für jedes Paar (Originalpunkt P, Bildpunkt P' bei V) gilt: |PP'| = 2|ab|.