Definitionen in der Mathematik SoSe 12 S: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Begriffe, die im Satz des Thales verwendet werden)
(Zurückführen auf bereits vorhanden Definitionen: Verwenden von Oberbegriffen)
 
(23 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 2: Zeile 2:
 
{|width=90%| style="background-color:#FFFF99; padding:1em"
 
{|width=90%| style="background-color:#FFFF99; padding:1em"
 
| valign="top" |
 
| valign="top" |
==Begriffe, Grundbegriffe, Axiome==
+
==Vorbemerkung==
 +
Wenn im folgenden von Definitionen die Rede ist, dann im im Sinne einer mathematischen Definition.
 +
==Beispiele für Definitionen==
 
===Begriffe, die im Satz des Thales verwendet werden===
 
===Begriffe, die im Satz des Thales verwendet werden===
  
Zeile 11: Zeile 13:
 
<!-- linke Spalte: zwei div-Container -->
 
<!-- linke Spalte: zwei div-Container -->
 
| width="50%" style="vertical-align:top; background-color:#FFFF99" |
 
| width="50%" style="vertical-align:top; background-color:#FFFF99" |
<div style="margin:0; margin-right:4px; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;">
+
<div style="margin:0; margin-right:4px; ; background-color:#FFFF99; align:left;">
  
{|width=90%| style="background-color:#FFFF99; padding:1em"
+
{|width=90%| style="background-color:#FFFF99; "
 
| valign="top" |
 
| valign="top" |
 
Einer der bekanntesten Sätze der Mathematik ist der Satz des Thales:<br /><br />
 
Einer der bekanntesten Sätze der Mathematik ist der Satz des Thales:<br /><br />
Zeile 23: Zeile 25:
 
<!-- rechte Spalte -->
 
<!-- rechte Spalte -->
 
| width="50%" style="vertical-align:top" |
 
| width="50%" style="vertical-align:top" |
<div style="margin:0; margin-right:0px; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;">
+
<div style="margin:0; margin-right:0px;background-color:#FFFF99; align:left;">
{|width=90%| style="background-color:#FFFF99; padding:1em"
+
{|width=90%| style="background-color:#FFFF99"
 
| valign="top" |
 
| valign="top" |
 
<ggb_applet width="303" height="336"  version="4.0" ggbBase64="UEsDBBQACAAIAE9Hj0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAE9Hj0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VnbjuM2En2efAUhBPs0lkmRus3aE7gbCHaAnswg3QmCfaMk2mYsS45I3xr5qfzIftMWScmW3T3evgw2iZEeimSxilWnblJG3+2WJdqIRsm6GnvExx4SVV4XspqNvbWeDhLvu/ffjGainoms4WhaN0uuxx4zlLIYe0GWh3QapwMRJtMBK7JwkKUZHRQRw0HGw1AUuYfQTsl3Vf0DXwq14rm4zediyW/qnGsreK716t1wuN1u/U6UXzez4WyW+TtVeAiuWamx1z68A3Ynh7bUkgcYk+EvH28c+4GslOZVLjxkVFjL99+8GW1lVdRbtJWFno89SlIPzYWczY1OMfXQ0BCtwCArkWu5EQqO9qZWZ71ceZaMV2b/jXtC5UEdDxVyIwvRjD3sR0GUhmnA4oglKQ5AYN1IUemWlrQyhx230UaKrWNrnqxE5iFd12XGDUf0++8owAFGb81A3BDAEEVuC7s1TN0QuIG5IXQ0zB1njpQ5GuZoGNhhI5XMSjH2prxUYEFZTRtA7zBXel8Ke5924ag9eQs6KXkPxBSDmziTwzrGb81fBH/MbAxPlSQ9qbpZP1PoUSR9usjgVYrSTmbwmJpB+AU1owtCnd5P0ZOEPZkgyv5n/x5IpJfUPJfo5q8TGLH/i4qjYRcqozY6kJob2tZ7tFgqEy80RWFq3J6gEGIjisHLQ0RSGOIAQTQgEiIWwpQkKDJjjGgMGwxRlCBDRyiywREm8A+LLbMIhcDMrMYQk4iAIIZCioiNKYYgkpCNS4jRgAJFGKIQDhnxJDAsaIRYBDOaIAZ3NCEZEyCkcBDmID5AlCBqDpMYBRGKDD/CTKhHibk6sAxQhFFEDEOIaohoF81AnyBqtIlac8lqtdYnJsqXRfeo69UBC6CGfHTMei4/nSTFN6OSZ6KEOnFrkERow0sTEVbQtK406kAM3Nqs4au5zNWt0BpOKfQr3/AbrsXue6BWnWxLm9eV+tzU+rou18tKIZTXJT7cuS5J7zk43BomtLfB+hthbyPqPcePyq1hB62VAPl1ozpyXhQfDMUxNYAlP1Xl/qoRfLGq5akao6EtOSOxzktZSF79DM5qpBi7oEMFMumqq0AUJ91F6qa43SvwYLT7t2hqEwyhD55//MG5fbtFY59EvR/UGJVzE3yU+vTkB4e+sNWKFpsDQnwnjsrOGhPZvckHdVWXxyWr/zVf6XVjmweQ1BitJtWsFNZHbLqFypwvsnp365yDOl53+xXMsLtBNrN2R5AbgjAEgnbM3GhpzNUOVNjSYEuBO2+TxWGfpIGlsGPmRksF7uuu1qpKOjUJ7sRIZTMa9tq46bKVcX5T6NeV1DfdRMt80apK3IEf1stMHFzolCf5WjxHwzMfGy1EU4mydWkAc12vlYvQnrcXIpdLmLqN1iTcwPUTXMCtFmLWiO7ipW3MnMHsLu5764Nly+r7pl5+qDZ34AtnFxgNu1uOVN7IlfE5lEEZWIijVxVScagiRf+ciUFQPTfVAsyjjWnu5uDTSnF9D3G61vMaYF/6Mx84QIoBO5pALMUS+i6krbNZfz0Y/aNt6Ix1UZ39ClnuUAjd/hE+2H7U8ayL8nI156bpa01Q8r1oToxi+X2si3NTARJWHwj5lWFgsF4J4dzE3RgeVsDQRtdJ0gLrK7SzYiHV7+0DVOB719C7jtZoa2LuJE+71TPgwJucoaypl0teFaiylftaNnkpvGMp4dhYDnFy4FivdbexcMxaFg/sDyjK/GDfxavtj59s/U/TqRLaGGzAAmsvegmbY5LQUL8W0KQrm8l0m7Psw79kUQjbu7gkKmei2oAaUD7g5Qe3r1Z77G6H7ruVHZhuYJf2pF26Jz3cwCsauUOTjn7SUU2g7g0SP01ZAhPa8p0wxw7cYBK6R9be6LfKKaFcLjGlXE4BgYuIf6g0ZBrQ4wz0hQN9N4Fc9gD4idu8uoz/afxNXoS/6TNnbsjc8HwXCJwLxJdc4Bhig8BPaRpDuQwIS+C9KQ67iPsqAXfJRld/lo1iqyIhTzMR9XHYt1BiTw++loVOHfSztdC5c5575PVzXPH6RWYmgetU7PjickC/ZjkYEJ8kSUIDhhOM05hgB0Xgx1EckyBJCYlTgk0SfCEwIA46PnNRu3Z7Gawf+f4MqmuXKiYPEOOXEWuAU4cH/x949Wzz+tpxwe8fM+veohCHOAUACGUxjkkUW3MnPqERpXEClCkmLHxFtTnL7XK5KmUu9cGqpfGSQy4HuB42gwshVqYL/1TdNbxS5jufo+k1mc+F9eoBrNnTYc3+2rAyP2BJGIVxkBr4aGpBhYrMooQBrmHMKInY3xbUWzEz62fATr4EbH4ZWNVy68DL/yLgus5r7IXQSKUM3pxZkEYYcLVoHhn//fCzr92Po2eiM3gMxP/8cRlF+0J3wAio7ddqXq5b8xI/BLePgjBNaJQEQRQ5ES9r6wl+CDR5HtAvwY03ea/2de9nZVlvfxTTUuysYR+8yvY6uN2qATmmJrZK3omdhmING2PvH7+ta/3PK7EV8IKAbqVA6PO6Wmj07e23aAlv3QUo9pGvle8oLfdTFDSw8055/5nBJNUNvxO/nPpl+wlQiUZOj5/L7Ccf7HUR0TJQmjfa9nHIdi3UhxDs/Ygro9Sn6ckv7HctfQSG/Q8E9jtc+7+U3v8XUEsHCIzaIDDOBwAA7xoAAFBLAQIUABQACAAIAE9Hj0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAT0ePQIzaIDDOBwAA7xoAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABlCAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="303" height="336"  version="4.0" ggbBase64="UEsDBBQACAAIAE9Hj0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAE9Hj0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VnbjuM2En2efAUhBPs0lkmRus3aE7gbCHaAnswg3QmCfaMk2mYsS45I3xr5qfzIftMWScmW3T3evgw2iZEeimSxilWnblJG3+2WJdqIRsm6GnvExx4SVV4XspqNvbWeDhLvu/ffjGainoms4WhaN0uuxx4zlLIYe0GWh3QapwMRJtMBK7JwkKUZHRQRw0HGw1AUuYfQTsl3Vf0DXwq14rm4zediyW/qnGsreK716t1wuN1u/U6UXzez4WyW+TtVeAiuWamx1z68A3Ynh7bUkgcYk+EvH28c+4GslOZVLjxkVFjL99+8GW1lVdRbtJWFno89SlIPzYWczY1OMfXQ0BCtwCArkWu5EQqO9qZWZ71ceZaMV2b/jXtC5UEdDxVyIwvRjD3sR0GUhmnA4oglKQ5AYN1IUemWlrQyhx230UaKrWNrnqxE5iFd12XGDUf0++8owAFGb81A3BDAEEVuC7s1TN0QuIG5IXQ0zB1njpQ5GuZoGNhhI5XMSjH2prxUYEFZTRtA7zBXel8Ke5924ag9eQs6KXkPxBSDmziTwzrGb81fBH/MbAxPlSQ9qbpZP1PoUSR9usjgVYrSTmbwmJpB+AU1owtCnd5P0ZOEPZkgyv5n/x5IpJfUPJfo5q8TGLH/i4qjYRcqozY6kJob2tZ7tFgqEy80RWFq3J6gEGIjisHLQ0RSGOIAQTQgEiIWwpQkKDJjjGgMGwxRlCBDRyiywREm8A+LLbMIhcDMrMYQk4iAIIZCioiNKYYgkpCNS4jRgAJFGKIQDhnxJDAsaIRYBDOaIAZ3NCEZEyCkcBDmID5AlCBqDpMYBRGKDD/CTKhHibk6sAxQhFFEDEOIaohoF81AnyBqtIlac8lqtdYnJsqXRfeo69UBC6CGfHTMei4/nSTFN6OSZ6KEOnFrkERow0sTEVbQtK406kAM3Nqs4au5zNWt0BpOKfQr3/AbrsXue6BWnWxLm9eV+tzU+rou18tKIZTXJT7cuS5J7zk43BomtLfB+hthbyPqPcePyq1hB62VAPl1ozpyXhQfDMUxNYAlP1Xl/qoRfLGq5akao6EtOSOxzktZSF79DM5qpBi7oEMFMumqq0AUJ91F6qa43SvwYLT7t2hqEwyhD55//MG5fbtFY59EvR/UGJVzE3yU+vTkB4e+sNWKFpsDQnwnjsrOGhPZvckHdVWXxyWr/zVf6XVjmweQ1BitJtWsFNZHbLqFypwvsnp365yDOl53+xXMsLtBNrN2R5AbgjAEgnbM3GhpzNUOVNjSYEuBO2+TxWGfpIGlsGPmRksF7uuu1qpKOjUJ7sRIZTMa9tq46bKVcX5T6NeV1DfdRMt80apK3IEf1stMHFzolCf5WjxHwzMfGy1EU4mydWkAc12vlYvQnrcXIpdLmLqN1iTcwPUTXMCtFmLWiO7ipW3MnMHsLu5764Nly+r7pl5+qDZ34AtnFxgNu1uOVN7IlfE5lEEZWIijVxVScagiRf+ciUFQPTfVAsyjjWnu5uDTSnF9D3G61vMaYF/6Mx84QIoBO5pALMUS+i6krbNZfz0Y/aNt6Ix1UZ39ClnuUAjd/hE+2H7U8ayL8nI156bpa01Q8r1oToxi+X2si3NTARJWHwj5lWFgsF4J4dzE3RgeVsDQRtdJ0gLrK7SzYiHV7+0DVOB719C7jtZoa2LuJE+71TPgwJucoaypl0teFaiylftaNnkpvGMp4dhYDnFy4FivdbexcMxaFg/sDyjK/GDfxavtj59s/U/TqRLaGGzAAmsvegmbY5LQUL8W0KQrm8l0m7Psw79kUQjbu7gkKmei2oAaUD7g5Qe3r1Z77G6H7ruVHZhuYJf2pF26Jz3cwCsauUOTjn7SUU2g7g0SP01ZAhPa8p0wxw7cYBK6R9be6LfKKaFcLjGlXE4BgYuIf6g0ZBrQ4wz0hQN9N4Fc9gD4idu8uoz/afxNXoS/6TNnbsjc8HwXCJwLxJdc4Bhig8BPaRpDuQwIS+C9KQ67iPsqAXfJRld/lo1iqyIhTzMR9XHYt1BiTw++loVOHfSztdC5c5575PVzXPH6RWYmgetU7PjickC/ZjkYEJ8kSUIDhhOM05hgB0Xgx1EckyBJCYlTgk0SfCEwIA46PnNRu3Z7Gawf+f4MqmuXKiYPEOOXEWuAU4cH/x949Wzz+tpxwe8fM+veohCHOAUACGUxjkkUW3MnPqERpXEClCkmLHxFtTnL7XK5KmUu9cGqpfGSQy4HuB42gwshVqYL/1TdNbxS5jufo+k1mc+F9eoBrNnTYc3+2rAyP2BJGIVxkBr4aGpBhYrMooQBrmHMKInY3xbUWzEz62fATr4EbH4ZWNVy68DL/yLgus5r7IXQSKUM3pxZkEYYcLVoHhn//fCzr92Po2eiM3gMxP/8cRlF+0J3wAio7ddqXq5b8xI/BLePgjBNaJQEQRQ5ES9r6wl+CDR5HtAvwY03ea/2de9nZVlvfxTTUuysYR+8yvY6uN2qATmmJrZK3omdhmING2PvH7+ta/3PK7EV8IKAbqVA6PO6Wmj07e23aAlv3QUo9pGvle8oLfdTFDSw8055/5nBJNUNvxO/nPpl+wlQiUZOj5/L7Ccf7HUR0TJQmjfa9nHIdi3UhxDs/Ygro9Sn6ckv7HctfQSG/Q8E9jtc+7+U3v8XUEsHCIzaIDDOBwAA7xoAAFBLAQIUABQACAAIAE9Hj0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAT0ePQIzaIDDOBwAA7xoAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABlCAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Zeile 31: Zeile 33:
 
</div>
 
</div>
 
|}
 
|}
 +
 +
====Kreis====
 +
{{Definition|::Es seien <math>M</math> ein Punkt der Ebene <math>\varepsilon</math> und <math>r>0</math> eine reelle Zahl. Die Menge aller Punkte der Ebene <math>\varepsilon</math>, die zu <math>M</math> den Abstand <math>r</math> haben, heißt Kreis mit dem Mittelpunkt <math>M</math> und Radius <math>r</math>.
 +
}}
  
 
====Peripheriewinkel====
 
====Peripheriewinkel====
Unter einem Peripheriewinkel <math>\alpha</math> eines Kreises <math>k</math> versteht man einen Winkel, für den gilt:
+
{{Definition|:Unter einem Peripheriewinkel <math>\alpha</math> eines Kreises <math>k</math> versteht man einen Winkel, für den gilt:
  
 
# Der Scheitelpunkt <math>S</math> von <math>\alpha</math> ist ein Punkt des Kreises <math>k</math>.
 
# Der Scheitelpunkt <math>S</math> von <math>\alpha</math> ist ein Punkt des Kreises <math>k</math>.
 
# Die Schenkel von <math>\alpha</math> haben außer <math>S</math> jeweils genau einen weiteren Punkt mit <math>k</math> gemeinsam.
 
# Die Schenkel von <math>\alpha</math> haben außer <math>S</math> jeweils genau einen weiteren Punkt mit <math>k</math> gemeinsam.
 +
}}
 +
 +
====Durchmesser====
 +
{{Definition|:: Es sei <math>k</math> ein Kreis mit dem Mittelpunkt <math>M</math>. Jede Sehne von <math>k</math>, die <math>M</math> enthält, ist ein Durchmesser von <math>k</math>.}}
 +
 +
==Kann man alles definieren?==
 +
Eine grundlegende Idee bei der Formulierung einer Definitionen ist die Verwendung von Oberbegriffen:
 +
 +
{{Definition|::Ein Quadrat ist eine Raute mit einem rechten Winkel.}}
 +
 +
Diese Definition des Begriffs ''Quadrat'' ist natürlich nur sinnvoll, wenn zunächst der Oberbegriff der ''Raute'' definiert wurde. In der Definition des Begriffs ''Raute'' könnte man jetzt den Oberbegriff ''Drachen'' verwenden, für den Begriff ''Drachen'' wiederum den Begriff ''Viereck'', für diesen ''n_Eck'' ... .
 +
<iframe src="http://www.ph-heidelberg.de/wp/gieding//FLASHZ/HDV_AndreaSpitz.swf" width="500" height="300" frameborder="2"></iframe>
 +
<br />
 +
<sub>(Obige Flash-Applikation wurde von Frau Andrea Spitz im Rahmen des Seminars "Erstellen von Multimediaanwendungen für den Unterricht" generiert.)</sub>
 +
<br />
 +
Schließlich und letzten Endes landet man beim Begriff der ''Punktmenge''. Für diesen müsste klar definiert sein, was ein Punkt ist. Wir werden feststellen, dass wir im Rahmen der Art und Weise, wie wir hier Geometrie betreiben, nicht klar definieren können, was ein ''Punkt'' ist.
  
Um einen mathematischen Satz verstehen oder auch beweisen zu können müssen alle verwendeten Begriffe und ihre Bedeutung exakt bestimmt, d. h. definiert werden.
+
''Punkte'', wie auch ''Geraden'' und ''Ebenen'' werden undefinierte Grundbegriffe sein.
<br />Um einen Begriff definieren zu können braucht man weitere Begriffe, mit denen man den neu zu definierten Begriff um- bzw. beschreibt. Auch diese weiteren Begriffe müssen aber im Vorfeld natürlich festgelegt, also auch definiert werden. Dies lässt sich dann endlos so weiterführen und man käme aus der Endlosschleife des Begriffedefinierens nicht heraus.<br />
+
Deshalb hat man in der Mathematik möglichst wenige grundlegende Begriffe, so genannte ''Grundbegriffe'' eingeführt, die nicht weiter bestimmt werden müssen (in der Geometrie z. B. die Begriffe: Punkte, Geraden, Ebenen, Abstand ...).<br />
+
Man legt nur, mit Hilfe der so genannten ''Axiome'', die Beziehungen zwischen den Grundbegriffen fest.<br />
+
  
 
==Was ist eine Definition?==
 
==Was ist eine Definition?==
Zeile 47: Zeile 66:
 
*Eine Definition ist nicht beweisbar und damit auch nicht wahr oder falsch sondern höchstens sinnvoll oder nicht sinnvoll.<br /> '''Anmerkung:''' Sie können z. B. eine Raute auf verschiedene Arten definieren. Alle Definitionen sollten aber immer die uns bekannte Raute beschreiben und nicht plötzlich eine andere Figur (Fünfeck, Trapez etc.). Das wäre dann natürlich schon falsch! Beispiele für in diesem Sinne falsche Definitionen finden Sie in den Übungen 1.
 
*Eine Definition ist nicht beweisbar und damit auch nicht wahr oder falsch sondern höchstens sinnvoll oder nicht sinnvoll.<br /> '''Anmerkung:''' Sie können z. B. eine Raute auf verschiedene Arten definieren. Alle Definitionen sollten aber immer die uns bekannte Raute beschreiben und nicht plötzlich eine andere Figur (Fünfeck, Trapez etc.). Das wäre dann natürlich schon falsch! Beispiele für in diesem Sinne falsche Definitionen finden Sie in den Übungen 1.
 
*Eine Definition sollte so wenig wie möglich und so viel wie nötig beinhalten.<br />'''Anmerkung:''' Dabei schwingt immer eine gewisse Unschärfe mit, die sich didaktisch begründen lässt:<br /> Bsp. Definition Rechteck: <br />Ein Rechteck ist ein Viereck mit drei rechten Innenwinkel. <br />Diese Definition ist so knapp wie möglich gehalten. Insbesondere genügt es die Eigenschaft: "besitzt drei rechte Innenwinkel" zu beschreiben, da sich der vierte rechte Innenwinkel zwangsläufig ergibt. In der Regel wird man hier aber ein Rechteck als Viereck mit vier rechten Innenwinkel definieren, da diese Definition insbesondere für Schülerinnen und Schüler einsichtiger und griffiger ist.<br /><br />
 
*Eine Definition sollte so wenig wie möglich und so viel wie nötig beinhalten.<br />'''Anmerkung:''' Dabei schwingt immer eine gewisse Unschärfe mit, die sich didaktisch begründen lässt:<br /> Bsp. Definition Rechteck: <br />Ein Rechteck ist ein Viereck mit drei rechten Innenwinkel. <br />Diese Definition ist so knapp wie möglich gehalten. Insbesondere genügt es die Eigenschaft: "besitzt drei rechte Innenwinkel" zu beschreiben, da sich der vierte rechte Innenwinkel zwangsläufig ergibt. In der Regel wird man hier aber ein Rechteck als Viereck mit vier rechten Innenwinkel definieren, da diese Definition insbesondere für Schülerinnen und Schüler einsichtiger und griffiger ist.<br /><br />
 +
 
==Genau dasselbe, nur ganz anders: Arten, Definitionen zu formulieren==
 
==Genau dasselbe, nur ganz anders: Arten, Definitionen zu formulieren==
 
Es gibt verschiedene Arten, Definitionen zu formulieren.
 
Es gibt verschiedene Arten, Definitionen zu formulieren.
Zeile 99: Zeile 119:
 
<br /><br />
 
<br /><br />
  
==Zurückführen auf bereits vorhanden Definitionen: Verwenden von Oberbegriffen==
+
 
===Das Haus der Vierecke===
+
<iframe src="http://www.ph-heidelberg.de/wp/gieding//FLASHZ/HDV_AndreaSpitz.swf" width="1000" height="600" frameborder="2"></iframe>
+
<br /><br />
+
Obige Flash-Applikation wurde von Frau Andrea Spitz im Rahmen des Seminars "Erstellen von Multimediaanwendungen für den Unterricht" generiert.
+
<br /><br />
+
 
|}
 
|}
  

Aktuelle Version vom 16. April 2012, 11:29 Uhr

Inhaltsverzeichnis

Vorbemerkung

Wenn im folgenden von Definitionen die Rede ist, dann im im Sinne einer mathematischen Definition.

Beispiele für Definitionen

Begriffe, die im Satz des Thales verwendet werden

Der Satz des Thales

Einer der bekanntesten Sätze der Mathematik ist der Satz des Thales:

Jeder Peripheriewinkel eine Kreises k über einem Durchmesser von k ist ein Rechter.

Man kann diesen Satz nicht verstehen, geschweige denn beweisen, wenn man nicht weiß, was man unter den Begriffen Kreis, Durchmesser und rechter Winkel versteht.

Kreis

Definition


Es seien M ein Punkt der Ebene \varepsilon und r>0 eine reelle Zahl. Die Menge aller Punkte der Ebene \varepsilon, die zu M den Abstand r haben, heißt Kreis mit dem Mittelpunkt M und Radius r.

Peripheriewinkel

Definition


Unter einem Peripheriewinkel \alpha eines Kreises k versteht man einen Winkel, für den gilt:
  1. Der Scheitelpunkt S von \alpha ist ein Punkt des Kreises k.
  2. Die Schenkel von \alpha haben außer S jeweils genau einen weiteren Punkt mit k gemeinsam.

Durchmesser

Definition


Es sei k ein Kreis mit dem Mittelpunkt M. Jede Sehne von k, die M enthält, ist ein Durchmesser von k.

Kann man alles definieren?

Eine grundlegende Idee bei der Formulierung einer Definitionen ist die Verwendung von Oberbegriffen:

Definition


Ein Quadrat ist eine Raute mit einem rechten Winkel.

Diese Definition des Begriffs Quadrat ist natürlich nur sinnvoll, wenn zunächst der Oberbegriff der Raute definiert wurde. In der Definition des Begriffs Raute könnte man jetzt den Oberbegriff Drachen verwenden, für den Begriff Drachen wiederum den Begriff Viereck, für diesen n_Eck ... . [ www.ph-heidelberg.de is not an authorized iframe site ]
(Obige Flash-Applikation wurde von Frau Andrea Spitz im Rahmen des Seminars "Erstellen von Multimediaanwendungen für den Unterricht" generiert.)
Schließlich und letzten Endes landet man beim Begriff der Punktmenge. Für diesen müsste klar definiert sein, was ein Punkt ist. Wir werden feststellen, dass wir im Rahmen der Art und Weise, wie wir hier Geometrie betreiben, nicht klar definieren können, was ein Punkt ist.

Punkte, wie auch Geraden und Ebenen werden undefinierte Grundbegriffe sein.

Was ist eine Definition?

  • Eine Definition ist in der Mathematik eine Begriffsbestimmung, die nur aus Grundbegriffen oder bereits definierten Begriffen besteht.
  • Eine Definition ist nicht beweisbar und damit auch nicht wahr oder falsch sondern höchstens sinnvoll oder nicht sinnvoll.
    Anmerkung: Sie können z. B. eine Raute auf verschiedene Arten definieren. Alle Definitionen sollten aber immer die uns bekannte Raute beschreiben und nicht plötzlich eine andere Figur (Fünfeck, Trapez etc.). Das wäre dann natürlich schon falsch! Beispiele für in diesem Sinne falsche Definitionen finden Sie in den Übungen 1.
  • Eine Definition sollte so wenig wie möglich und so viel wie nötig beinhalten.
    Anmerkung: Dabei schwingt immer eine gewisse Unschärfe mit, die sich didaktisch begründen lässt:
    Bsp. Definition Rechteck:
    Ein Rechteck ist ein Viereck mit drei rechten Innenwinkel.
    Diese Definition ist so knapp wie möglich gehalten. Insbesondere genügt es die Eigenschaft: "besitzt drei rechte Innenwinkel" zu beschreiben, da sich der vierte rechte Innenwinkel zwangsläufig ergibt. In der Regel wird man hier aber ein Rechteck als Viereck mit vier rechten Innenwinkel definieren, da diese Definition insbesondere für Schülerinnen und Schüler einsichtiger und griffiger ist.

Genau dasselbe, nur ganz anders: Arten, Definitionen zu formulieren

Es gibt verschiedene Arten, Definitionen zu formulieren.

Beispiel 1: ggT zweier ganzer Zahlen

Die Begriffe Teiler und Euklidischer Algorithmus seien im Folgenden bereits exakt definiert.

Das Übliche, die Realdefinition

Es seien a und b zwei ganze Zahlen. T sei die Menge aller Zahlen, die sowohl Teiler von a als auch von b sind. Die größte Zahl der Menge T heißt größter gemeinsamer Teiler der Zahlen a und b.

Konventionaldefinition, das Ganze in "wenn-dann"

Wenn eine Zahl g sowohl die ganze Zahl a als auch die ganze Zahl b teilt und es keine Zahl t gibt, die auch a und b teilt und dabei größer als g ist, dann ist g der größte gemeinsame Teiler von a und b.

Schön, aber wie bekomme ich den ggT: die genetisch, operative Definition

Der letzte von 0 verschiedene Rest, den man bei Anwendung des Euklidischen Algorithmus auf die ganzen Zahlen a und b erhält, ist der größte gemeinsame Teiler der Zahlen a und b.

Beispiel 2: Drachenviereck

Die Begriffe Dreieck, Viereck, Diagonale, Eckpunkt, Geradenspiegelung und achsensymmetrisch seien im Folgenden bereits definiert.

Realdefinition

Ein Viereck, bei dem die eine Diagonale Teilmenge der Mittelsenkrechten seiner anderen Diagonale ist, heißt Drachenviereck.

Konventionaldefinition

Wenn ein Viereck achsensymmetrisch bezüglich einer Geraden ist, die durch zwei Eckpunkte des Vierecks geht, dann heißt das Viereck Drachenviereck.

genetisch, operative Definition

Es sei \overline{ABC}ein Dreieck und \ C' das Bild von \ C bei der Spiegelung an \ AB. Das Viereck \overline{AC'BC} ist ein Drachenviereck.

Ein wenig Didaktik: Definitionen auf verschiedenen Niveaustufen

Aus didaktischer Sicht lassen sich Definitionen auf verschiedenen Niveaustufen formulieren.


Das nachfolgende Skript gibt weitere Informationen:
* Definitionen

Entwicklung einer "neuen" Definition

Im Folgenden wollen wir versuchen, den (ihnen vermutlich wenig geläufigen) Begriff Ellipse zu definieren. Konstruktiv lässt sich eine Ellipse mit Hilfe der sogenannten Gärtnerkonstruktion, wie im folgenden Video, erzeugen.

EmbedVideo erhielt die unbrauchbare ID „PQjeTmY0cdQ&NR=1“ für „youtube“.

Bemerkung zu obigem Video: Das geht natürlich noch schöner. Ansporn für Sie?

In einer ersten intuitiven Definition können wir also sagen:

Das folgende Applet empfindet die Gärtnerkonstruktion nach.



Aufgaben:

  1. Experimentieren Sie nun mit dem Applet und machen Sie sich dabei die mathematischen Zusammenhänge klar (Tipp: Bewegen Sie den Punkt P und beobachten Sie die Strecken a und b).
    Welche Zusammenhänge entdecken Sie?

  2. Versuchen Sie nun aus den Erkenntnissen eine formale Definition des Begriffs
    Ellipse zu entwickeln.

  3. Können Sie nun den Begriff Kreis unter Verwendung des Oberbegriffs Ellipse definieren?

Vereinbarung: Wir setzen ebene Geometrie voraus.

Definition E.1: Ellipse

Definition K.1: Kreis als spezielle Ellipse